Tue, 21 Jun 2022

14:00 - 15:00
L6

The orbit method and normality of closures of nilpotent orbits

Dan Barbasch
(Cornell University, USA)
Abstract

The work of Kraft-Procesi classifies closures of nilpotent orbits that are normal in the cases of classical complex Lie algebras. Subsequent work of Ranee Brylinsky combines this work with the Theta correspondence as defined by Howe to attach a representation of the corresponding complex group. It provides a quantization of the closure of a nilpotent orbit. In joint work with Daniel Wong, we carry out a detailed analysis of these representations viewed as (\g,K)-modules of the complex group viewed as a real group. One consequence is a "representation theoretic" proof of the classification of Kraft-Procesi.

Tue, 07 Jun 2022

03:00 - 04:00
Online

Infinite-bin model and the longest increasing path in an Erdős-Rényi graph

Bastien Mallein
(Sorbonne Université - Université de Paris)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We consider an oriented acyclic version of the Erdős-Rényi random graph: the set of vertices is {1,...,n}, and for each pair i < j, an edge from i to j is independently added to the graph with probability p. The length of the longest path in such a graph grows linearly with the number of vertices in the graph, and its growth rate is a deterministic function C of the probability p of presence of an edge.
Foss and Konstantopoulos introduced a coupling between these graphs and a particle system called the "Infinite-bin model". By using this coupling, we prove some properties of C, that it is analytic on (0,1], its development in series at point 1 and its asymptotic behaviour as p goes to 0.

Image of Sam Palmer on the  roof terrace of the Andrew Wiles Building

A popular social media conjecture is that mathematics consists of a series of clever puzzles presented by a crew of witty magicians.

To test this, we spent the marvellous month of May travelling the Andrew Wiles Building, home to Oxford Mathematics, to find out what mathematicians actually do, and why.

In Episode 1 meet Jacobus, Maria and Sam.

Tue, 07 Jun 2022

14:00 - 15:00
C6

Homological analysis of network dynamics

Dane Taylor
(Department of Mathematics - University at Buffalo)
Abstract

Social, biological and physical systems are widely studied through the modeling of dynamical processes over networks, and one commonly investigates the interplay between structure and dynamics. I will discuss how cyclic patterns in networks can influence models for collective and diffusive processes, including generalized models in which dynamics are defined over simplicial complexes and multiplex networks. Our approach relies on homology theory, which is the subfield of mathematics that formally studies cycles (and more generally, k-dimensional holes). We will make use of techniques including persistent homology and Hodge theory to examine the role of cycles in helping organize dynamics onto low-dimensional manifolds. This pursuit represents an emerging interface between the fields of network-coupled dynamical systems and topological data analysis.

Thu, 09 Jun 2022

12:00 - 13:00
L1

The ever-growing blob of fluid

Graham.Benham@maths.ox.ac.uk
(Mathematical Institute)
Abstract

Consider the injection of a fluid onto an impermeable surface for an infinite length of time... Does the injected fluid reach a finite height, or does it keep on growing forever? The classical theory of gravity currents suggests that the height remains finite, causing the radius to grow outwards like the square root of time. When the fluid resides within a porous medium, the same is thought to be true. However, recently I used some small scale experiments and numerical simulations, spanning 12 orders of magnitude in dimensionless time, to demonstrate that the height actually grows very slowly, at a rate ~t^(1/7)*(log(t))^(1/2). This strange behaviour can be explained by analysing the flow in a narrow "inner region" close to the source, in which there are significant vertical velocities and non-hydrostatic pressures. Analytical scalings are derived which match closely with both numerics and experiments, suggesting that the blob of fluid is in fact ever-growing, and therefore becomes unbounded with time.

Written and recorded by Jamaican artist Junior Murvin in protest at police and gang violence in his home country, this song became a success in the US and UK and an anthem of the 1976 Notting Hill Carnival in London which broke out in to riots. The Clash also recorded a version as part of their fusion of reggae and punk.

Projective and telescopic projective integration for non-linear kinetic mixtures
Bailo, R Rey, T Journal of Computational Physics volume 458 (25 Feb 2022)
Combining mechanisms of growth arrest in solid tumours: a mathematical investigation
Colson, C Byrne, H Maini, P Bulletin of Mathematical Biology volume 84 (01 Jul 2022)
A spectral analysis of the nonlinear Schrodinger equation in the co-exploding frame
Chapman, S Kavousanakis, M Charalampidis, E Kevrekidis, I Kevrekidis, P Physica D: Nonlinear Phenomena volume 439 (08 Jun 2022)
Subscribe to