Fri, 29 Apr 2022

16:00 - 17:00
L1

North Meets South

Akshat Mugdal and Renee Hoekzema
Abstract
Speaker: Akshat Mugdal
 
Title: Fantastic arithmetic structures and where to find them
 
Abstract: This talk will be a gentle introduction to additive combinatorics, an area lying somewhat at the intersection of combinatorics, number theory and harmonic analysis, which concerns itself with identification and classification of sets with additive structure. In this talk, I will outline various notions of when a finite set of integers may be considered to be additively structured and how these different notions interconnect with each other, with various examples sprinkled throughout. I will provide some further applications and open problems surrounding this circle of ideas, including a quick study of sets that exhibit multiplicative structure and their interactions with the aforementioned notions of additivity.
 
 
Speaker: Renee Hoekzema 

Title: Exploring the space of genes in single cell transcriptomics datasets

Abstract: Single cell transcriptomics is a revolutionary technique in biology that allows for the measurement of gene expression levels across the genome for many individual cells simultaneously. Analysis of these vast datasets reveals variations in expression patterns between cells that were previously out of reach. On top of discrete clustering into cell types, continuous patterns of variation become visible, which are associated to differentiation pathways, cell cycle, response to treatment, adaptive heterogeneity or what just whatever the cells are doing at that moment. Current methods for assigning biological meaning to single cell experiments relies on predefining groups of cells and computing what genes are differentially expressed between them. The complexity found in modern single cell transcriptomics datasets calls for more intricate methods to biologically interpret both discrete clusters as well as continuous variations. We propose topologically-inspired data analysis methods that identify coherent gene expression patterns on multiple scales in the dataset. The multiscale methods consider discrete and continuous transcriptional patterns on equal footing based on the mathematics of spectral graph theory. As well as selecting important genes, the methodology allows one to visualise and explore the space of gene expression patterns in the dataset.

Tue, 26 Apr 2022

13:30 - 15:00
Imperial College

CDT in Mathematics of Random Systems April Workshop 2022

Julian Meier, Omer Karin
(University of Oxford/Imperial College London)
Further Information

Please contact @email for remote viewing details

Abstract

1:30pm Julian Meier, University of Oxford

Interacting-Particle Systems with Elastic Boundaries and Nonlinear SPDEs

We study interacting particle systems on the positive half-line. When we impose an elastic boundary at zero, the particle systems give rise to nonlinear SPDEs with irregular boundaries. We show existence and uniqueness of solutions to these equations. To deal with the nonlinearity we establish a probabilistic representation of solutions and regularity in L2.

2:15pm Dr Omer Karin, Imperial College London

Mathematical Principles of Biological Regulation

Modern research in the life sciences has developed remarkable methods to measure and manipulate biological systems. We now have detailed knowledge of the molecular interactions inside cells and the way cells communicate with each other. Yet many of the most fundamental questions (such as how do cells choose and maintain their identities? how is development coordinated? why do homeostatic processes fail in disease?) remain elusive, as addressing them requires a good understanding of complex dynamical processes. In this talk, I will present a mathematical approach for tackling these questions, which emphasises the role of control and of emergent properties. We will explore the application of this approach to various questions in biology and biomedicine, and highlight important future directions.

 

Direction reconstruction using a CNN for GeV-scale neutrinos in IceCube
Yu, S Journal of Instrumentation volume 16 issue 11 c11001 (01 Nov 2021)
Ian Griffiths

The virus causing the COVID-19 pandemic, SARS-CoV-2, is transmitted through virus-carrying respiratory droplets, which are released when an infected person coughs, sneezes, talks or breathes. Most of these droplets will fall to the ground within two metres, hence the guidelines to maintain social distancing. However, some droplets are small enough to float in the air. These droplets may remain airborne for hours and be carried throughout a room, leading to airborne transmission.

Thu, 13 Oct 2022

14:00 - 15:00
L3

Introduction to the Discrete De Rham complex

Jerome Droniou
(Monash University)
Abstract

Hilbert complexes are chains of spaces linked by operators, with properties that are crucial to establishing the well-posedness of certain systems of partial differential equations. Designing stable numerical schemes for such systems, without resorting to nonphysical stabilisation processes, requires reproducing the complex properties at the discrete level. Finite-element complexes have been extensively developed since the late 2000's, in particular by Arnold, Falk, Winther and collaborators. These are however limited to certain types of meshes (mostly, tetrahedral and hexahedral meshes), which limits options for, e.g., local mesh refinement.

In this talk we will introduce the Discrete De Rham complex, a discrete version of one of the most popular complexes of differential operators (involving the gradient, curl and divergence), that can be applied on meshes consisting of generic polytopes. We will use a simple magnetostatic model to motivate the need for (continuous and discrete) complexes, then give a presentation of the lowest-order version of the complex and sketch its links with the CW cochain complex on the mesh. We will then briefly explain how this lowest-order version is naturally extended to an arbitrary-order version, and briefly present the associated properties (Poincaré inequalities, primal and adjoint consistency, commutation properties, etc.) that enable the analysis of schemes based on this complex.

Thu, 28 Apr 2022

14:00 - 15:00
L3

An SDP approach for tensor product approximation of linear operators on matrix spaces

Andre Uschmajew
(Max Planck Institute Leipzig)
Abstract

Tensor structured linear operators play an important role in matrix equations and low-rank modelling. Motivated by this we consider the problem of approximating a matrix by a sum of Kronecker products. It is known that an optimal approximation in Frobenius norm can be obtained from the singular value decomposition of a rearranged matrix, but when the goal is to approximate the matrix as a linear map, an operator norm would be a more appropriate error measure. We present an alternating optimization approach for the corresponding approximation problem in spectral norm that is based on semidefinite programming, and report on its practical performance for small examples.
This is joint work with Venkat Chandrasekaran and Mareike Dressler.

Thu, 12 May 2022

14:00 - 15:00
L3

Direct solvers for elliptic PDEs

Gunnar Martinsson
(Univerity of Texas at Austin)
Abstract

That the linear systems arising upon the discretization of elliptic PDEs can be solved efficiently is well-known, and iterative solvers that often attain linear complexity (multigrid, Krylov methods, etc) have proven very successful. Interestingly, it has recently been demonstrated that it is often possible to directly compute an approximate inverse to the coefficient matrix in linear (or close to linear) time. The talk will argue that such direct solvers have several compelling qualities, including improved stability and robustness, the ability to solve certain problems that have remained intractable to iterative methods, and dramatic improvements in speed in certain environments.

After a general introduction to the field, particular attention will be paid to a set of recently developed randomized algorithms that construct data sparse representations of large dense matrices that arise in scientific computations. These algorithms are entirely black box, and interact with the linear operator to be compressed only via the matrix-vector multiplication.

The nascent coffee ring with arbitrary droplet contact set: an asymptotic analysis
Oliver, J Vella, D Moore, M Journal of Fluid Mechanics
Subscribe to