14:00
Braids, Unipotent Representations, and Nonabelian Hodge Theory
Abstract
A complex plane curve singularity gives rise to two objects: (1) a moduli space that representation theorists call an affine Springer fiber, and (2) a topological link up to isotopy. Roughly a decade ago, Oblomkov–Rasmussen–Shende conjectured a striking identity relating the homology of the affine Springer fiber to the so-called HOMFLYPT homology of the link. In unpublished writing, Shende speculated that it would follow from advances in nonabelian Hodge theory: the study of transcendental diffeomorphisms relating “Hitchin” and “Betti” moduli spaces. We make this dream precise by expressing HOMFLYPT homology in terms of the homology of a “Betti”-type space, which, we conjecture, deformation-retracts onto the affine Springer fiber. In doing so, we recast the whole story in terms of an arbitrary semisimple group. We give evidence for the nonabelian Hodge conjecture at the numerical level, using a mysterious formula that involves rational Cherednik algebras and the degrees of unipotent principal-series representations.
Approximation of mean curvature flow with generic singularities by smooth flows with surgery
Abstract
We construct smooth flows with surgery that approximate weak mean curvature flows with only spherical and neck-pinch singularities. This is achieved by combining the recent work of Choi-Haslhofer-Hershkovits, and Choi-Haslhofer-Hershkovits-White, establishing canonical neighbourhoods of such singularities, with suitable barriers to flows with surgery. A limiting argument is then used to control these approximating flows. We demonstrate an application of this surgery flow by improving the entropy bound on the low-entropy Schoenflies conjecture.
Extensions of Specht modules and p-ary designs
Abstract
The Specht modules are of fundamental importance to the representation theory of the symmetric group, and their 0th cohomology is understood through entirely combinatorial methods due to Gordon James. Over fields of odd characteristic, Hemmer proposed a similar combinatorial approach to calculating their 1st degree cohomology, or extensions by the trivial module. This combinatorial approach motivates the definition of universal $p$-ary designs, which we shall classify. We then explore the consequences of this classification to problem of determining extensions of Specht modules. In particular, we classify all extensions of Specht modules indexed by two-part partitions by the trivial module and shall see some far-reaching conditions on when the first cohomology of a Specht module is trivial.
Convexity and squares in additive combinatorics
Abstract
A nice collection of problems in additive combinatorics focus on analysing solutions to additive equations over sequences that exhibit some flavour of convexity. This, for instance, includes genuine convex sequences as well as images of arbitrary sets under convex functions. In this talk, I will survey some of the literature surrounding these type of questions, along with some motivation from analytic number theory as well as the current best known results towards these problems.
13:00
M-theory, enumerative geometry, and representation theory of affine Lie algebras
Note unusual time (1pm) and room (L2)
Abstract
I will review some well-established relationships between four manifolds and vertex algebras that can be deduced from studying the M5-brane worldvolume theory, and outline some of the corresponding results in mathematics which have been understood so far. I will then describe a proposal of Gaiotto-Rapcak to generalize these ideas to the setting of multiple M5 branes wrapping divisors in toric Calabi-Yau threefolds, and explain work in progress on understanding the mathematical implications of this proposal as a complex network of relationships between the enumerative geometry of sheaves on threefolds and the representation theory of affine Lie algebras.
16:30
String-like amplitudes for surfaces beyond the disk
Abstract
In 1969, Koba and Nielsen found some equations (now known as u-equations or non-crossing equations) whose solutions can be described as cross-ratios of n points on a line. The tree string amplitude, or generalized Veneziano amplitude, can be defined as an integral over the non-negative solutions to the u-equations. This is a function of the Mandelstam variables and has interesting properties: it does not diverge as the Mandelstam variables get large, and it exhibits factorization when one of the variables approaches zero. One should think of these functions as being associated to the disk with marked points on the boundary. I will report on ongoing work with Nima Arkani-Hamed, Hadleigh Frost, Pierre-Guy Plamondon, and Giulio Salvatori, in which we replace the disk by other oriented surfaces. I will emphasize the part of our approach which is based on representations of gentle algebras, which arise from a triangulation of the surface.
Calabi-Yau Modularity and Black Holes
Abstract
One of the consequences of Wiles' proof of Fermat's Last Theorem is that elliptic curves over rational numbers can be associated with modular forms, whose Fourier coefficients essentially count points on the curve. Generalisation of this modularity to higher dimensional varieties is a very interesting open question. In this talk I will give a physicist's view of Calabi-Yau modularity. Starting with a very simplified overview of some number theoretic background related to the Langlands program, I relate some of this theory to black holes in IIB/A string theories compactified on Calabi-Yau threefolds. It is possible to associate modular forms to certain such black holes. We can then ask whether these modular forms have a physical interpretation as, for example, counting black hole microstates. In an attempt to answer this question, we derive a formula for fully instanton-corrected black hole entropy, which gives an interesting hint of this counting. The talk is partially based on recent work arXiv:2104.02718 with P. Candelas and J. McGovern.