Tue, 02 Jun 2020

15:30 - 16:30

The Fyodorov-Hiary-Keating conjecture

Paul Bourgade
(New York University)
Abstract

Fyodorov-Hiary-Keating established a series of conjectures concerning the large values of the Riemann zeta function in a random short interval. After reviewing the origins of these predictions through the random matrix analogy, I will explain recent work with Louis-Pierre Arguin and Maksym Radziwill, which proves a strong form of the upper bound for the maximum.

Tue, 12 May 2020

15:30 - 16:30

Interacting particle systems and random walks on Hecke algebras

Alexey Bufetov
(Hausdorff Center for Mathematics)
Abstract

In the last thirty years there was a lot of progress in understanding the asymmetric simple exclusion process (ASEP). Much less is currently known about the multi-species extension of ASEP. In the talk I will discuss the connection of such an extension to random walks on Hecke algebras and its probabilistic applications. 

Tue, 05 May 2020

15:30 - 16:30

Large deviations for random matrices via spherical integrals

Alice Guionnet
(ENS Lyon)
Abstract

I will talk about how to get large deviations estimates for randomly rotated matrix models using the asymptotics of spherical (aka orbital, aka HCIZ) integrals. Compared to the talk I gave last week in integrable probability conference I will concentrate on random  matrices rather than symmetric functions.

Thu, 30 Apr 2020

17:00 - 18:00

Quiver varieties and Kac-Moody algebras

Filip Zivanovic
Abstract

Quiver varieties are one of the main objects of study in Geometric Representation Theory. Defined by Nakajima in 1994, there has been a lot of research on them, but there is still a lot to be yet discovered, especially about their geometry. In this seminar, I will talk about their first use in Geometric Representation Theory as providing geometric representations of symmetric Kac-Moody Lie algebras.

Email @email to get a link to the Jitsi meeting room (it is included in the weekly announcements).

Thu, 07 May 2020

12:00 - 13:00
Virtual

Vectorial problems: sharp Lipschitz bounds and borderline regularity

Cristiana De FIlippis
(University of Oxford)
Abstract

Non-uniformly elliptic functionals are variational integrals like
\[
(1) \qquad \qquad W^{1,1}_{loc}(\Omega,\mathbb{R}^{N})\ni w\mapsto \int_{\Omega} \left[F(x,Dw)-f\cdot w\right] \, \textrm{d}x,
\]
characterized by quite a wild behavior of the ellipticity ratio associated to their integrand $F(x,z)$, in the sense that the quantity
$$
\sup_{\substack{x\in B \\ B\Subset \Omega \ \small{\mbox{open ball}}}}\mathcal R(z, B):=\sup_{\substack{x\in B \\ B\Subset \Omega \ \small{\mbox{open ball}}}} \frac{\mbox{highest eigenvalue of}\ \partial_{z}^{2} F(x,z)}{\mbox{lowest eigenvalue of}\  \partial_{z}^{2} F(x,z)} $$
may blow up as $|z|\to \infty$. 
We analyze the interaction between the space-depending coefficient of the integrand and the forcing term $f$ and derive optimal Lipschitz criteria for minimizers of (1). We catch the main model cases appearing in the literature, such as functionals with unbalanced power growth or with fast exponential growth such as
$$
w \mapsto \int_{\Omega} \gamma_1(x)\left[\exp(\exp(\dots \exp(\gamma_2(x)|Dw|^{p(x)})\ldots))-f\cdot w \right]\, \textrm{d}x
$$
or
$$
w\mapsto \int_{\Omega}\left[|Dw|^{p(x)}+a(x)|Dw|^{q(x)}-f\cdot w\right] \, \textrm{d}x.
$$
Finally, we find new borderline regularity results also in the uniformly elliptic case, i.e. when
$$\mathcal{R}(z,B)\sim \mbox{const}\quad \mbox{for all balls} \ \ B\Subset \Omega.$$

The talk is based on:
C. De Filippis, G. Mingione, Lipschitz bounds and non-autonomous functionals. $\textit{Preprint}$ (2020).

Thu, 18 Jun 2020
12:00
Virtual

A variational approach to fluid-structure interactions

Sebastian Schwarzacher
(Charles University in Prague)
Abstract

I introduce a recently developed variational approach for hyperbolic PDE's. The method allows to show the existence of weak solutions to fluid-structure interactions where a visco-elastic bulk solid is interacting with an incompressible fluid governed by the unsteady Navier Stokes equations. This is a joint work with M. Kampschulte and B. Benesova.

Thu, 11 Jun 2020
12:00
Virtual

On dynamic slip boundary condition

Erika Maringova
(Vienna University of Technology)
Abstract

In the talk, we study the Navier–Stokes-like problems for the flows of homogeneous incompressible fluids. We introduce a new type of boundary condition for the shear stress tensor, which includes an auxiliary stress function and the time derivative of the velocity. The auxiliary stress function serves to relate the normal stress to the slip velocity via rather general maximal monotone graph. In such way, we are able to capture the dynamic response of the fluid on the boundary. Also, the constitutive relation inside the domain is formulated implicitly. The main result is the existence analysis for these problems.

Thu, 28 May 2020
15:00
Virtual

Boundary regularity of area-minimizing currents: a linear model with analytic interface

Zihui Zhao
(University of Chicago)
Abstract

Given a curve , what is the surface  that has smallest area among all surfaces spanning ? This classical problem and its generalizations are called Plateau's problem. In this talk we consider area minimizers among the class of integral currents, or roughly speaking, orientable manifolds. Since the 1960s a lot of work has been done by De Giorgi, Almgren, et al to study the interior regularity of these minimizers. Much less is known about the boundary regularity, in the case of codimension greater than 1. I will speak about some recent progress in this direction.

Subscribe to