Tue, 12 May 2020
14:00
Virtual

Sections of high rank varieties and applications

Tamar Ziegler
(Hebrew University of Jerusalem)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will describe some recent work with D. Kazhdan where we obtain results in algebraic geometry, inspired by questions in additive combinatorics, via analysis over finite fields. Specifically we are interested in quantitative properties of polynomial rings that are independent of the number of variables. A sample application is the following theorem : Let $V$ be a complex vector space, $P$ a high rank polynomial of degree $d$, and $X$ the null set of $P$, $X=\{v \mid P(v)=0\}$. Any function $f:X\to C$ which is polynomial of degree $d$ on lines in $X$ is the restriction of a degree $d$ polynomial on $V$.

Tue, 05 May 2020
15:30
Virtual

Multidimensional Erdős-Szekeres theorem

Benny Sudakov
(ETH Zurich)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The classical Erdős-Szekeres theorem dating back almost a hundred years states that any sequence of $(n-1)^2+1$ distinct real numbers contains a monotone subsequence of length $n$. This theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural one was proposed by Fishburn and Graham more than 25 years ago. They raise the problem of how large should a $d$-dimesional array be in order to guarantee a "monotone" subarray of size $n \times n \times \ldots \times n$. In this talk we discuss this problem and show how to improve their original Ackerman-type bounds to at most a triple exponential. (Joint work with M. Bucic and T. Tran)

Tue, 28 Apr 2020
15:30
Virtual

Percolation on triangulations, and a bijective path to Liouville quantum gravity

Olivier Bernardi
(Brandeis)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss the percolation model on planar triangulations, and present a bijection that is key to relating this model to some fundamental probabilistic objects. I will attempt to achieve several goals:
1. Present the site-percolation model on random planar triangulations.
2. Provide an informal introduction to several probabilistic objects: the Gaussian free field, Schramm-Loewner evolutions, and the Brownian map.
3. Present a bijective encoding of percolated triangulations by certain lattice paths, and explain its role in establishing exact relations between the above-mentioned objects.
This is joint work with Nina Holden, and Xin Sun.

Thu, 07 May 2020
17:00

Around classification for NIP theories

Pierre Simon
(UC Berkeley)
Abstract

I will present a conjectural picture of what a classification theory for NIP could look like, in the spirit of Shelah's classification theory for stable structures. Though most of it is speculative, there are some encouraging initial results about the lower levels of the classification, in particular concerning structures which, in some strong sense, do not contain trees.

Mon, 04 May 2020
15:45
Virtual

Virtually algebraically fibered congruence subgroups

Ian Agol
(UC Berkeley)
Abstract

Addressing a question of Baker and Reid,

we give a criterion to show that an arithmetic group 

has a congruence subgroup that is algebraically

fibered. Some examples to which the criterion applies

include a hyperbolic 4-manifold group containing infinitely

many Bianchi groups, and a complex hyperbolic surface group.

This is joint work with Matthew Stover.

Mon, 01 Jun 2020
15:45
Virtual

Trying to understand mapping class groups of algebraic surfaces from the Thurstonian point of view

Benson Farb
(University of Chicago)
Abstract

In some ways the theory of mapping class groups of 4-manifolds is in 2020 at the same place where the theory of mapping class groups of 2-manifolds was in 1973, before Thurston changed everything.  In this talk I will describe some first steps in an ongoing joint project with Eduard Looijenga where we are trying to understand mapping class groups of certain algebraic surfaces (e.g. rational elliptic surfaces, and also K3 surfaces) from the Thurstonian point of view.

Fri, 12 Jun 2020

16:00 - 17:00
Virtual

North Meets South

Paolo Aceto
Abstract

Paolo Aceto

Knot concordance and homology cobordisms of 3-manifolds 

We introduce the notion of knot concordance for knots in the 3-sphere and discuss some key problems regarding the smooth concordance group. After defining homology cobordisms of 3-manifolds we introduce the integral and rational homology cobordism groups and briefly discuss their relationship with the concordance group. We conclude stating a few recent results and open questions on the structure of these groups.

Subscribe to