Thu, 23 May 2019
11:30
C4

Parameterization

Alex Wilkie
((Oxford University))
Abstract

I will give an introduction to the theory of definable parameterization of definable sets in the o-minimal context and its application to diophantine problems. I will then go on to discuss uniformity issues with particular reference to the subanalytic case. This is joint work with Jonathan Pila and Raf Cluckers

Mon, 24 Jun 2019
15:45
L6

Derived modular functors

Lukas Jannik Woike
(Hamburg)
Abstract

 For a semisimple modular tensor category the Reshetikhin-Turaev construction yields an extended three-dimensional topological field theory and hence by restriction a modular functor. By work of Lyubachenko-Majid the construction of a modular functor from a modular tensor category remains possible in the non-semisimple case. We explain that the latter construction is the shadow of a derived modular functor featuring homotopy coherent mapping class group actions on chain complex valued conformal blocks and a version of factorization and self-sewing via homotopy coends. On the torus we find a derived version of the Verlinde algebra, an algebra over the little disk operad (or more generally a little bundles algebra in the case of equivariant field theories). The concepts will be illustrated for modules over the Drinfeld double of a finite group in finite characteristic. This is joint work with Christoph Schweigert (Hamburg).

Wed, 15 May 2019
11:00
N3.12

The Yang-Mills equations and Uhlenbeck Compactness

Hector Papoulias
(University of Oxford)
Abstract

This talk is a brief introduction to the analysis of Donaldson theory, a branch of gauge theory. Roughly, this is an area of differential topology that aims to extract smooth structure invariants from the geometry of the space of solutions (moduli space) to a system of partial differential equations: the Yang-Mills equations.

I will start by discussing the differential geometric background required to talk about Yang-Mills connections. This will involve introducing the concepts of principal fibre bundles, connections and curvature. In the second half of the talk I will attempt to convey the flavour of the mathematics used to address technical issues in gauge theory. I plan to do this by presenting a sketch of the proof of Uhlenbeck's compactness theorem, the main technical tool involved in the compactification of the moduli space.

Wed, 05 Jun 2019
16:00
C1

Serre's property (FA) for automorphisms of free products

Naomi Andrew
(Southampton University)
Abstract

Property (FA) is one of the `rigidity properties’ defined for groups, concerning the way a group can act on trees. We’ll take a look at why you might be interested in an action on a tree, what the property is, and then investigate which automorphism groups of free products have it.

Wed, 22 May 2019
16:00
C1

Outer automorphism groups of right-angled Coxeter groups

Andrew Sale
(University of Hawaii at Manoa)
Abstract

The last decade or so has seen substantial progress in the theory of (outer) automorphism groups of right-angled Artin groups (RAAGs), spearheaded by work of Charney and Vogtmann. Many of the techniques used for RAAGs also apply to a wider class of groups, graph products of finitely generated abelian groups, which includes right-angled Coxeter groups (RACGs). In this talk, I will give an introduction to automorphism groups of such graph products, and describe recent developments surrounding the outer automorphism groups of RACGs, explaining the links to what we know in the RAAG case.

Snap-through buckling is a type of instability in which an elastic object rapidly jumps from one state to another. Such instabilities are familiar from everyday life: you have probably been soaked by an umbrella flipping upwards in high winds, while snap-through is harnessed to generate fast motions in applications ranging from soft robotics to artificial heart valves.

Tue, 25 Jun 2019

17:00 - 18:00
L4

On the circulation structures in traditional Chinese algorithms

GUO Shirong
(Institute for the History of Science and Technology,Inner Mongolia Normal University)
Abstract

It is unnecessary to emphasize important place of algorithms in computer science. Many efficient and convenient algorithms are designed by borrowing or revising ancient mathematical algorithms and methods. For example, recursive method, exhaustive search method, greedy method, “divide and conquer” method, dynamic programming method, reiteration algorithm, circulation algorithm, among others.

 

From the perspective of the history of computer science, it is necessary to study the history of algorithms used in the computer computations. The history of algorithms for computer science is naturally regarded as a sub-object of history of mathematics. But historians of mathematics, at least those who study history of mathematics in China, have not realized it is important in the history of mathematics. Historians of Chinese mathematics paid little attention to these studies, mainly having not considered from this research angle. Relevant research is therefore insufficient in the field of history of mathematics.

 

The mechanization thought and algorithmization characteristic of Chinese traditional (and therefore, East Asian) mathematics, however, are coincident with that of computer science. Traditional Chinese algorithms, therefore, show their importance historical significance in computer science. It is necessary and important to survey traditional algorithms again from the point of views of computer science. It is also another angle for understanding traditional Chinese mathematics.

 

There are many things in the field that need to be researched. For example, when and how were these algorithms designed? What was their mathematical background? How were they applied in ancient mathematical context? How are their complexity and efficiency of ancient algorithms?

 

In the present paper, we will study the circulation structure in traditional Chinese mathematical algorithms. Circulation structures have great importance in the computer science. Most algorithms are designed by means of one or more circulation structures. Ancient Chinese mathematicians were familiar them with the circulation structures and good at their applications. They designed a lot of circulation structures to obtain their desirable results in mathematical computations. Their circulation structures of dozen ancient algorithms will be analyzed. They are selected from mathematical and astronomical treatises, and also one from the Yijing (Book of Changes), the oldest of the Chinese classics.

Subscribe to