Tue, 13 Nov 2018
16:00
L5

Projective geometries arising from Elekes-Szabó problems

Martin Bays
(Muenster)
Abstract

I will explain how complex varieties which have asymptotically large intersections with finite grids can be seen to correspond to projective geometries, exploiting ideas of Hrushovski. I will describe how this leads to a precise characterisation of such varieties. Time permitting, I will discuss consequences for generalised sum-product estimates and connections to diophantine problems. This is joint work with Emmanuel Breuillard.

Tue, 06 Nov 2018
16:00
L5

Standard conjectures in model theory, and categoricity of comparison isomorphisms

Misha Gavrilovich
(Higher School of Economics)
Abstract


abstract:

In my talk I shall try to explain the following speculation and present some
evidence in the form of "correlations" between categoricity conjectures in
model theory and motivic conjectures in algebraic geometry.

Transfinite induction constructions developed in model theory are by now
sufficiently developed to be used to build analogues of objects in algebraic
geometry constructed with a choice of topology, such as a singular cohomology theory,
the Hodge decomposition, and fundamental groups of complex algebraic varieties.
Moreover, these algebraic geometric objects are often conjectured to satisfy
homogeneity or freeness properties which are true for objects constructed by
transfinite induction.


An example of this is Hrushovski fusion used to build Zilber pseudoexponentiation,
i.e. a group homomorphism  $ex:C^+ \to C^*$ which satisfies Schanuel conjecture,
a transcendence property analogous to Grothendieck conjecture on periods.


I shall also present a precise conjecture on "uniqueness" of Q-forms (comparison isomorphisms)
of complex etale cohomology, and will try to explain its relation to conjectures on l-adic
Galois representations coming from the theory of motivic Galois group.
 

Tue, 30 Oct 2018
16:00
L5

On a question of Babai and Sós, a nonstandard approach.

Daniel Palacin
(Freiburg)
Abstract

In 1985, Babai and Sós asked whether there exists a constant c>0 such that every finite group of order n has a product-free set of size at least cn, where a product-free set of a group is a subset that does not contain three elements x,y and z  satisfying xy=z. Gowers showed that the answer is no in the early 2000s, by linking the existence of product-free sets of large density to the existence of low dimensional unitary representations.

In this talk, I will provide an answer to the aforementioned question by model theoretic means. Furthermore, I will relate some of Gowers' results to the existence of nontrivial definable compactifications of nonstandard finite groups.
 

Tue, 04 Dec 2018

16:00 - 17:30
L4

Quantifying Ambiguity Bounds Through Hypothetical Statistical Testing

Anne Balter
Abstract

Authors:

Anne Balter and Antoon Pelsser

Models can be wrong and recognising their limitations is important in financial and economic decision making under uncertainty. Robust strategies, which are least sensitive to perturbations of the underlying model, take uncertainty into account. Interpreting

the explicit set of alternative models surrounding the baseline model has been difficult so far. We specify alternative models by a stochastic change of probability measure and derive a quantitative bound on the uncertainty set. We find an explicit ex ante relation

between the choice parameter k, which is the radius of the uncertainty set, and the Type I and II error probabilities on the statistical test that is hypothetically performed to investigate whether the model specification could be rejected at the future test horizon.

The hypothetical test is constructed to obtain all alternative models that cannot be distinguished from the baseline model with sufficient power. Moreover, we also link the ambiguity bound, which is now a function of interpretable variables, to numerical

values on several divergence measures. Finally, we illustrate the methodology on a robust investment problem and identify how the robustness multiplier can be numerically interpreted by ascribing meaning to the amount of ambiguity.

Mon, 05 Nov 2018

16:00 - 17:00
L4

On the Monge-Ampere equation via prestrained elasticity

Marta Lewicka
(University of Pittsburgh)
Abstract

In this talk, we will present results regarding the regularity and

rigidity of solutions to the Monge-Ampere equation, inspired by the role

played by this equation in the context of prestrained elasticity. We will

show how the Nash-Kuiper convex integration can be applied here to achieve

flexibility of Holder solutions, and how other techniques from fluid

dynamics (the commutator estimate, yielding the degree formula in the

present context) find their parallels in proving the rigidity. We will indicate

possible avenues for the future related research.

Mon, 22 Oct 2018

13:00 - 14:00
N3.12

Mathematrix lunches - Friendly food

Abstract

Our meeting will be a relaxed opportunity to have informal discussions about issues facing minorities in academia and mathematics over lunch. In particular, if anyone would like to suggest a topic to start a discussion about (either in advance or on the day) then please feel free to do this, and it could be a spring board for organised sessions on the same topics in future terms!

Mon, 04 Mar 2019
14:15
L4

Structural results in wrapped Floer theory

John Pardon
(Princeton)
Abstract

I will discuss results relating different partially wrapped Fukaya categories.  These include a K\"unneth formula, a `stop removal' result relating partially wrapped Fukaya categories relative to different stops, and a gluing formula for wrapped Fukaya categories.  The techniques also lead to generation results for Weinstein manifolds and for Lefschetz fibrations.  The methods are mainly geometric, and the key underlying Floer theoretic fact is an exact triangle in the Fukaya category associated to Lagrangian surgery along a short Reeb chord at infinity.  This is joint work with Sheel Ganatra and Vivek Shende.

Subscribe to