A^1 contractible varieties
Abstract
Motivic homotopy theory gives a way of viewing algebraic varieties and topological spaces as objects in the same category, where homotopies are parametrised by the affine line. In particular, there is a notion of $\mathbb A^1$ contractible varieties. Affine spaces are $\mathbb A^1$ contractible by definition. The Koras-Russell threefold KR defined by the equation $x + x^2y + z^2 + t^3 = 0$ in $\mathbb A^4$ is the first nontrivial example of an $\mathbb A^1$ contractible smooth affine variety. We will discuss this example in some detail, and speculate on whether one can use motivic homotopy theory to distinguish between KR and $\mathbb A^3$.
Irreducibility of random polynomials
Abstract
Let $P$ be a random polynomial of degree $d$ such that the leading and constant coefficients are 1 and the rest of the coefficients are independent random variables taking the value 0 or 1 with equal probability. Odlyzko and Poonen conjectured that $P$ is irreducible with probability tending to 1 as $d$ grows. I will talk about an on-going joint work with Emmanuel Breuillard, in which we prove that GRH implies this conjecture. The proof is based on estimates for the mixing time of random walks on $\mathbb{F}_p$, where the steps are given by the maps $x \rightarrow ax$ and $x \rightarrow ax+1$ with equal probability.
16:00
North meets South Colloquium
Abstract
Claudia Scheimbauer
Title: Quantum field theory meets higher categories
Abstract: Studying physics has always been a driving force in the development of many beautiful pieces of mathematics in many different areas. In the last century, quantum field theory has been a central such force and there have been several fundamentally different approaches using and developing vastly different mathematical tools. One of them, Atiyah and Segal's axiomatic approach to topological and conformal quantum field theories, provides a beautiful link between the geometry of "spacetimes” (mathematically described as cobordisms) and algebraic structures. Combining this approach with the physical notion of "locality" led to the introduction of the language of higher categories into the topic. The Cobordism Hypothesis classifies "fully local" topological field theories and gives us a recipe to construct examples thereof by checking certain algebraic conditions generalizing the existence of the dual of a vector space. I will give an introduction to the topic and very briefly mention on my own work on these "extended" topological field theories.
Alberto Paganini
Title: Shape Optimization with Finite Elements
Abstract: Shape optimization means looking for a domain that minimizes a target cost functional. Such problems are commonly solved iteratively by constructing a minimizing sequence of domains. Often, the target cost functional depends on the solution to a boundary value problem stated on the domain to be optimized. This introduces the difficulty of solving a boundary value problem on a domain that changes at each iteration. I will suggest how to address this issue using finite elements and conclude with an application from optics.
Teaching Mindsets
Abstract
Research suggests that students with a 'growth mindset' may do better than those with a 'fixed mindset'.
- What does that mean for our teaching?
- How can we support students to develop a growth mindset?
- What sorts of mindsets do we ourselves have?
- And how does that affect our teaching and indeed the rest of our work?
Panel Discussion - Failure, Success and everything between...
North meets South Colloquium
Abstract
Jan Sbierski
Title: On the unique evolution of solutions to wave equations
Abstract: An important aspect of any physical theory is the ability to predict the future of a system in terms of an initial configuration. This talk focuses on wave equations, which underlie many physical theories. We first present an example of a quasilinear wave equation for which unique predictability in fact fails and then turn to conditions which guarantee predictability. The talk is based on joint work with Felicity Eperon and Harvey Reall.
Andrew Krause
Title: Surprising Dynamics due to Spatial Heterogeneity in Reaction-Diffusion Systems
Abstract: Since Turing's original work, Reaction-Diffusion systems have been used to understand patterning processes during the development of a variety of organisms, as well as emergent patterns in other situations (e.g. chemical oscillators). Motivated by understanding hair follicle formation in the developing mouse, we explore the use of spatial heterogeneity as a form of developmental tuning of a Turing pattern to match experimental observations of size and wavelength modulation in embryonic hair placodes. While spatial heterogeneity was nascent in Turing's original work, much work remains to understand its effects in Reaction-Diffusion processes. We demonstrate novel effects due to heterogeneity in two-component Reaction-Diffusion systems and explore how this affects typical spatial and temporal patterning. We find a novel instability which gives rise to periodic creation, translation, and destruction of spikes in several classical reaction-diffusion systems and demonstrate that this periodic spatiotemporal behaviour appears robustly away from Hopf regimes or other oscillatory instabilities. We provide some evidence for the universal nature of this phenomenon and use it as an exemplar of the mostly unexplored territory of explicit heterogeneity in pattern formation.
Counting rational points and iterated polynomial equations
Abstract
In joint work with Gareths Boxall and Jones we prove a poly-logarithmic bound for the number of rational points on the graph of functions on the disc that exhibit a certain decay. I will present an application of this counting theorem to the arithmetic of dynamical systems. It concerns fields generated by the solutions of equations of the form $P^{\circ n}(z) = P^{\circ n}(y)$ for a polynomial $P$ of degree $D \geq 2$ where $y$ is a fixed algebraic number. The general goal is to show that the degree of such fields grows like a power of $D^n$.