Mon, 14 May 2018

14:15 - 15:15
L4

Families of Hyperkaehler varieties via families of stability conditions

Arend Bayer
(Edinburgh)
Abstract

Stability conditions on derived categories of algebraic varieties and their wall-crossings have given algebraic geometers a number of new tools to study the geometry of moduli spaces of stable sheaves. In work in progress with Macri, Lahoz, Nuer, Perry and Stellari, we are extending this toolkit to a the "relative" setting, i.e. for a family of varieties. Our construction comes with relative moduli spaces of stable objects; this gives additional ways of constructing new families of varieties from a given family, thereby potentially relating different moduli spaces of varieties.

 

Fri, 02 Mar 2018

12:00 - 13:00
C3

On the Existence of $C^{1,1}$ Isometric Immersions of Some Negatively Curved Surfaces

Siran Li
(Rice University)
Abstract

In this talk we discuss the recent proof for the existence of $C^{1,1}$ isometric immersions of several classes of negatively curved surfaces into $\R^3$, including the Lobachevsky plane, metrics of helicoid type and a one-parameter family of perturbations of the Enneper surface. Our method, following Chen--Slemrod--Wang and Cao--Huang--Wang, is to transform the Gauss--Codazzi equations into a system of hyperbolic balance laws, and prove the existence of weak solutions by finding the invariant regions. In addition, we provide further characterisation of the $C^{1,1}$ isometrically immersed generalised helicoids/catenoids established in the literature.

Wed, 28 Feb 2018

12:00 - 13:00
L4

On the Geometric Regularity Criteria for Incompressible Navier--Stokes Equations

Siran Li
(Rice University)
Abstract

We present some recent results on the regularity criteria for weak solutions to the incompressible Navier--Stokes equations (NSE) in 3 dimensions. By the work of Constantin--Fefferman, it is known that the alignment of vorticity directions is crucial to the regularity of NSE in $\R^3$.  In this talk we show a boundary regularity theorem for NSE on curvilinear domains with oblique derivative boundary conditions. As an application, the boundary regularity of incompressible flows on balls, cylinders and half-spaces with Navier boundary condition is established, provided that the vorticity is coherently aligned up to the boundary. The effects of  vorticity alignment on the $L^q$, $1<q<\infty$ norm of the vorticity will also be discussed.

Mon, 07 May 2018

14:15 - 15:15
L4

Tautological integrals over Hilbert scheme of points.

Greg Berczi
(ETH Zurich)
Abstract

I present recently developed iterated residue formulas for tautological integrals over Hilbert schemes of points on  smooth  manifolds. Applications include curve and hypersurface counting formulas. Joint work with Andras Szenes.

 

Fri, 02 Mar 2018

10:00 - 11:00
N3.12

Introduction to Quiver Varieties

Thomas Zielinski
Abstract

Quiver varieties, as first studied by Grojnowski and Nakajima, form an interesting class of geometric objects, which can be constructed by an array of different techniques (GIT, symplectic and Hyperkaehler reduction). In this talk, we will explain how to construct these varieties, and how their homology gives rise to a categorification of the representations of Kac-Moody Lie algebras

Fri, 01 Jun 2018

13:00 - 14:00
L6

Multilevel Monte Carlo for Estimating Risk Measures

Mike Giles
Abstract

Joint work with Abdul-Lateef Haji-Ali

This talk will discuss efficient numerical methods for estimating the probability of a large portfolio loss, and associated risk measures such as VaR and CVaR. These involve nested expectations, and following Bujok, Hambly & Reisinger (2015) we use the number of samples for the inner conditional expectation as the key approximation parameter in the Multilevel Monte Carlo formulation. The main difference in this case is the indicator function in the definition of the probability. Here we build on previous work by Gordy & Juneja (2010) who analyse the use of a fixed number of inner samples, and Broadie, Du & Moallemi (2011) who develop and analyse an adaptive algorithm. I will present the algorithm, outline the main theoretical results and give the numerical results for a representative model problem. I will also discuss the extension to real portfolios with a large number of options based on multiple underlying assets.

Fri, 18 May 2018

13:00 - 14:00
L6

A probabilistic approach to non-parametric local volatility

Martin Tegner
Abstract

The local volatility model is a celebrated model widely used for pricing and hedging financial derivatives. While the model’s main appeal is its capability of reproducing any given surface of observed option prices—it provides a perfect fit—the essential component of the model is a latent function which can only be unambiguously determined in the limit of infinite data. To (re)construct this function, numerous calibration methods have been suggested involving steps of interpolation and extrapolation, most often of parametric form and with point-estimates as result. We seek to look at the calibration problem in a probabilistic framework with a nonparametric approach based on Gaussian process priors. This immediately gives a way of encoding prior believes about the local volatility function, and a hypothesis model which is highly flexible whilst being prone to overfitting. Besides providing a method for calibrating a (range of) point-estimate, we seek to draw posterior inference on the distribution over local volatility to better understand the uncertainty attached with the calibration. Further, we seek to understand dynamical properties of local volatility by augmenting the hypothesis space with a time dimension. Ideally, this gives us means of inferring predictive distributions not only locally, but also for entire surfaces forward in time.

Subscribe to