Mon, 15 Feb 2016

14:00 - 15:00
L5

TBA

Dr. Garth Wells
(Schlumberger)
Thu, 19 May 2016

14:00 - 15:00
L5

Computing defective eigenpairs in parameter-dependent eigenproblems

Dr. Melina Freitag
(University of Bath)
Abstract

The requirement to compute Jordan blocks for multiple eigenvalues arises in a number of physical problems, for example panel flutter problems in aerodynamical stability, the stability of electrical power systems, and in quantum mechanics. We introduce a general method for computing a 2-dimensional Jordan block in a parameter-dependent matrix eigenvalue problem based on the so called Implicit Determinant Method. This is joint work with Alastair Spence (Bath).

Thu, 05 May 2016

14:00 - 15:00
L5

How to effectively compute the spectrum of the Laplacian with mixed Dirichlet and Neumann data

Professor Nilima Nigam
(Simon Fraser University)
Abstract
Eigenfunctions of the Laplace operator with mixed Dirichet-Neumann boundary conditions may possess singularities, especially if the Dirichlet-Neumann junction occurs at angles $\geq \frac{\pi}{2}$. This suggests the use of boundary integral strategies to solve such eigenproblems. As with boundary value problems, integral-equation methods allow for a reduction of dimension, and the resolution of singular behaviour which may otherwise present challenges to volumetric methods.
 
In this talk, we present a  novel integral-equation algorithm for mixed Dirichlet-Neumann eigenproblems. This is based on joint work with Oscar Bruno and Eldar Akhmetgaliyev (Caltech).
 
For domains with smooth boundary, the singular behaviour of the eigenfunctions at  Dirichlet-Neumann junctions is incorporated as part of the discretization strategy for the integral operator.  The discretization we use is based on the high-order Fourier Continuation method (FC). 
 
 For non-smooth (Lipschitz) domains an alternative high-order discretization is presented which achieves high-order accuracy on the basis of graded meshes.
 
 In either case (smooth or Lipschitz boundary), eigenvalues are evaluated by examining the minimal singular values of a suitable discrete system. A naive implementation will not succeed even in simple situations. We implement a strategy inspired by one suggested by Trefethen and Betcke, who developed a modified method of particular solutions.
 
The method is conceptually simple, and allows for highly accurate and efficient computation of eigenvalues and eigenfunctions, even in challenging geometries. 
Thu, 28 Apr 2016

14:00 - 15:00
L5

Fast simplicial finite elements via Bernstein polynomials

Professor Rob Kirby
(Baylor University)
Abstract

For many years, sum-factored algorithms for finite elements in rectangular reference geometry have combined low complexity with the mathematical power of high-order approximation.  However, such algorithms rely heavily on the tensor product structure inherent in the geometry and basis functions, and similar algorithms for simplicial geometry have proven elusive.

Bernstein polynomials are totally nonnegative, rotationally symmetric, and geometrically decomposed bases with many other remarkable properties that lead to optimal-complexity algorithms for element wise finite element computations.  The also form natural building blocks for the finite element exterior calculus bases for the de Rham complex so that H(div) and H(curl) bases have efficient representations as well.  We will also their relevance for explicit discontinuous Galerkin methods, where the element mass matrix requires special attention.

Tue, 16 Feb 2016

15:00 - 16:00
L5

Hrushovski's construction

Felix Weitkamper
(Oxford University)
Abstract
I will give a general overview of the versatile method behind Hrushovski's construction and then sketch the proof that the original strongly minimal set considered by him does not interpret an infinite group using a group configuration.
 
Tue, 19 Apr 2016

15:45 - 16:45
L3

Cutting and pasting in algebraic geometry

Ravi Vakil
(Stanford)
Abstract

Given some class of "geometric spaces", we can make a ring as follows. Additive structure: when U is an open subset a space X,  [X] = [U] + [X - U]. Multiplicative structure:  [X][Y] = [XxY]. In the algebraic setting, this ring (the "Grothendieck ring of varieties") contains surprising structure, connecting geometry to arithmetic and topology.  I will discuss some remarkable
statements about this ring (both known and conjectural), and present new statements (again, both known and conjectural).  A motivating example will be polynomials in one variable. This is joint work with Melanie Matchett Wood.

Subscribe to