On the data-sparsity of the solution of Riccati equations with quasiseparable coefficients
Abstract
Solving large-scale continuous-time algebraic Riccati equations is a significant challenge in various control theory applications.
This work demonstrates that when the matrix coefficients of the equation are quasiseparable, the solution also exhibits numerical quasiseparability. This property enables us to develop two efficient Riccati solvers. The first solver is applicable to the general quasiseparable case, while the second is tailored to the particular case of banded coefficients. Numerical experiments confirm the effectiveness of the proposed algorithms on both synthetic examples and case studies from the control of partial differential equations and agent-based models.