Thu, 21 Nov 2019

16:00 - 17:30
L3

Mesoscopic modeling of chromatin structure considering the state of molecules

Yuichi Togashi
(Hiroshima)
Abstract

In biological cells, genomic DNA is complexed with proteins, forming so-called chromatin structure, and packed into the nucleus. Not only the nucleotide (A, T, G, C) sequence of DNA but also the 3D structure affects the genomic function. For example, certain regions of DNA are tightly packed with proteins (heterochromatin), which inhibits expression of genes coded there. The structure sometimes changes drastically depending on the state (e.g. cell cycle or developmental stage) of the cell. Hence, the structural dynamics of chromatin is now attracting attention in cell biology and medicine. However, it is difficult to experimentally observe the motion of the entire structure in detail. To combine and interpret data from different modes of observation (such as live imaging and electron micrograph) and predict the behavior, structural models of chromatin are needed. Although we can use molecular dynamics simulation at a microscopic level (~ kilo base-pairs) and for a short time (~ microseconds), we cannot reproduce long-term behavior of the entire nucleus. Mesoscopic models are wanted for that purpose, however hard to develop (there are fundamental difficulties).

In this seminar, I will introduce our recent theoretical/computational studies of chromatin structure, either microscopic (molecular dynamics of DNA or single nucleosomes) or abstract (polymer models and reaction-diffusion processes), toward development of such a mesoscopic model including local "states" of DNA and binding proteins.

 

References:

T. Kameda, A. Awazu, Y. Togashi, "Histone Tail Dynamics in Partially Disassembled Nucleosomes During Chromatin Remodeling", Front. Mol. Biosci., in press (2019).

Y. Togashi, "Modeling of Nanomachine/Micromachine Crowds: Interplay between the Internal State and Surroundings", J. Phys. Chem. B 123, 1481-1490 (2019).

E. Rolls, Y. Togashi, R. Erban, "Varying the Resolution of the Rouse Model on Temporal and Spatial Scales: Application to Multiscale Modelling of DNA Dynamics", Multiscale Model. Simul. 15, 1672-1693 (2017).

S. Shinkai, T. Nozaki, K. Maeshima, Y. Togashi, "Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells", PLoS Comput. Biol. 12, e1005136 (2016).

-

Mon, 28 Oct 2019
12:45

Duality walls and 3d S-fold SCFTs

Noppadol Mekareeya
(Milano Bicocca)
Abstract

A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of 3d superconformal field theories, known as the S-fold SCFTs.  One of the interesting features of such a theory is that, in general, it does not admit a conventional Lagrangian description. Nevertheless, it can be described by a quiver diagram with a link being a superconformal field theory, known as the T(U(N)) theory. In this talk, we discuss various properties of the S-fold theories, including their supersymmetric indices, supersymmetry enhancement in the infrared, as well as several interesting dualities.
 

Mon, 14 Oct 2019
12:45
L3

Black Holes to Algebraic Curves: Consequences of the Weak Gravity Conjecture

Tom Rudelius
(IAS Princeton)
Abstract

The Weak Gravity Conjecture holds that in any consistent theory of quantum gravity, gravity must be the weakest force. This simple proposition has surprisingly nontrivial physical consequences, which in the case of supersymmetric string/M-theory compactifications lead to nontrivial geometric consequences for Calabi-Yau manifolds. In this talk we will describe these conjectured geometric consequences in detail and show how they are realized in concrete examples, deriving new results about 5d supersymmetric black holes in the process.

Search for Sources of Astrophysical Neutrinos Using Seven Years of
IceCube Cascade Events
Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Auffenberg, J Axani, S Backes, P Bagherpour, H Bai, X V, A Barbano, A Barwick, S Bastian, B Baum, V Baur, S Bay, R Beatty, J Becker, K Tjus, J BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Börner, M Böser, S Botner, O Böttcher, J Bourbeau, E Bourbeau, J Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Burgman, A Buscher, J Busse, R Carver, T Chen, C Cheung, E Chirkin, D Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dave, P André, J Clercq, C DeLaunay, J Dembinski, H Deoskar, K Ridder, S Desiati, P Vries, K Wasseige, G With, M DeYoung, T Diaz, A Díaz-Vélez, J Dujmovic, H Dunkman, M Dvorak, E Eberhardt, B Ehrhardt, T Eller, P Engel, R Evenson, P Fahey, S Fazely, A Felde, J Filimonov, K Finley, C Franckowiak, A Friedman, E Fritz, A Gaisser, T Gallagher, J Ganster, E Garrappa, S Gerhardt, L Ghorbani, K Glauch, T Glüsenkamp, T Goldschmidt, A Gonzalez, J Grant, D Griffith, Z Günder, M Gündüz, M Haack, C Hallgren, A Halve, L Halzen, F Hanson, K Haungs, A Hebecker, D Heereman, D Heix, P Helbing, K Hellauer, R Henningsen, F Hickford, S Hignight, J Hill, G Hoffman, K Hoffmann, R Hoinka, T Hokanson-Fasig, B Hoshina, K Huang, F Huber, M Huber, T Hultqvist, K Hünnefeld, M Hussain, R In, S Iovine, N Ishihara, A Japaridze, G Jeong, M Jero, K Jones, B Jonske, F Joppe, R Kang, D Kang, W Kappes, A Kappesser, D Karg, T Karl, M Karle, A Katz, U Kauer, M Kelley, J Kheirandish, A Kim, J Kintscher, T Kiryluk, J Kittler, T Klein, S Koirala, R Kolanoski, H Köpke, L Kopper, C Kopper, S Koskinen, D Kowalski, M Krings, K Krückl, G Kulacz, N Kurahashi, N Kyriacou, A Labare, M Lanfranchi, J Larson, M Lauber, F Lazar, J Leonard, K Leszczyńska, A Leuermann, M Liu, Q Lohfink, E Mariscal, C Lu, L Lucarelli, F Lünemann, J Luszczak, W Lyu, Y Ma, W Madsen, J Maggi, G Mahn, K Makino, Y Mallik, P Mallot, K Mancina, S Mariş, I Maruyama, R Mase, K Maunu, R McNally, F Meagher, K Medici, M Medina, A Meier, M Meighen-Berger, S Menne, T Merino, G Meures, T Micallef, J Momenté, G Montaruli, T Moore, R Morse, R Moulai, M Muth, P Nagai, R Naumann, U Neer, G Niederhausen, H Nowicki, S Nygren, D Pollmann, A Oehler, M Olivas, A O'Murchadha, A O'Sullivan, E Palczewski, T Pandya, H Pankova, D Park, N Peiffer, P Heros, C Philippen, S Pieloth, D Pinat, E Pizzuto, A Plum, M Porcelli, A Price, P Przybylski, G Raab, C Raissi, A Rameez, M Rauch, L Rawlins, K Rea, I Reimann, R Relethford, B Renschler, M Renzi, G Resconi, E Rhode, W Richman, M Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Rysewyk, D Safa, I Herrera, S Sandrock, A Sandroos, J Santander, M Sarkar, S Satalecka, K Schaufel, M Schieler, H Schlunder, P Schmidt, T Schneider, A Schneider, J Schröder, F Schumacher, L Sclafani, S Seckel, D Seunarine, S Shefali, S Silva, M Snihur, R Soedingrekso, J Soldin, D Song, M Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stein, R Steinmüller, P Stettner, J Steuer, A Stezelberger, T Stokstad, R Stößl, A Strotjohann, N Stürwald, T Stuttard, T Sullivan, G Taboada, I Tenholt, F Ter-Antonyan, S Terliuk, A Tilav, S Tomankova, L Tönnis, C Toscano, S Tosi, D Trettin, A Tselengidou, M Tung, C Turcati, A Turcotte, R Turley, C Ty, B Unger, E Elorrieta, M Usner, M Vandenbroucke, J Driessche, W Eijk, D Eijndhoven, N Vanheule, S Santen, J Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Watson, T Weaver, C Weindl, A Weiss, M Weldert, J Wendt, C Werthebach, J Whelan, B Whitehorn, N Wiebe, K Wiebusch, C Wille, L Williams, D Wills, L Wolf, M Wood, J Wood, T Woschnagg, K Wrede, G Xu, D Xu, X Xu, Y Yanez, J Yodh, G Yoshida, S Yuan, T Zöcklein, M The Astrophysical Journal: an international review of astronomy and astronomical physics (13 Nov 2019) http://arxiv.org/abs/1907.06714v1
Thu, 07 Nov 2019

16:00 - 17:00
L4

Sensitivity Analysis of the Utility Maximization Problem with Respect to Model Perturbations

Oleksii Mostovyi
(University of Connecticut)
Abstract

First, we will give a brief overview of the asymptotic analysis results in the context of optimal investment. Then, we will focus on the sensitivity of the expected utility maximization problem in a continuous semimartingale market with respect to small changes in the market price of risk. Assuming that the preferences of a rational economic agent are modeled by a general utility function, we obtain a second-order expansion of the value function, a first-order approximation of the terminal wealth, and construct trading strategies that match the indirect utility function up to the second order. If a risk-tolerance wealth process exists, using it as numeraire and under an appropriate change of measure, we reduce the approximation problem to a Kunita–Watanabe decomposition. Then we discuss possible extensions and special situations, in particular, the power utility case and models that admit closed-form solutions. The central part of this talk is based on the joint work with Mihai Sirbu.

The 1918 Spanish influenza pandemic claimed around fifty million lives worldwide. Interventions were introduced to reduce the spread of the virus, but these were not based on quantitative assessments of the likely effects of different control strategies. One hundred years later, mathematical modelling is routinely used for forecasting and to help plan interventions during outbreaks in populations of humans, animals and plants.

Subscribe to