Shape Optimisation with Conformal Mappings
Abstract
The design of shapes that are in some sense optimal is a task faced by engineers in a wide range of disciplines. In shape optimisation one aims to improve a given initial shape by iteratively deforming it - if the shape is represented by a mesh, then this means that the mesh has to deformed. This is a delicate problem as overlapping or highly stretched meshes lead to poor accuracy of numerical methods.
In the presented work we consider a novel mesh deformation method motivated by the Riemannian mapping theorem and based on conformal mappings.
Shape optimization under overhang constraints imposed by additive manufacturing technologies
Abstract
The purpose of this work is to introduce a new constraint functional for shape optimization problems, which enforces the constructibility by means of additive manufacturing processes, and helps in preventing the appearance of overhang features - large regions hanging over void which are notoriously difficult to assemble using such technologies. The proposed constraint relies on a simplified model for the construction process: it involves a continuum of shapes, namely the intermediate shapes corresponding to the stages of the construction process where the total, final shape is erected only up to a certain level. The shape differentiability of this constraint functional is analyzed - which is not a standard issue because of its peculiar structure. Several numerical strategies and examples are then presented. This is a joint work with G. Allaire, R. Estevez, A. Faure and G. Michailidis.
14:30
Homomorphism Thresholds For Graphs
Abstract
The interplay of minimum degree and 'structural properties' of large graphs with a given forbidden subgraph is a central topic in extremal graph theory. For a given graph $F$ we define the homomorphism threshold as the infimum $\alpha$ such that every $n$-vertex $F$-free graph $G$ with minimum degree $>\alpha n$ has a homomorphic image $H$ of bounded size (independent of $n$), which is $F$-free as well. Without the restriction of $H$ being $F$-free we recover the definition of the chromatic threshold, which was determined for every graph $F$ by Allen et al. The homomorphism threshold is less understood and we present recent joint work with O. Ebsen on the homomorphism threshold for odd cycles.
12:00
Blowup phenomena in nonlocal and nonlinear conservation laws
Abstract
Recent results on viscous conservation laws with nonlocal flux will be presented. Such models contain, as a particular example, the celebrated parabolic-elliptic Keller-Segel model of chemotaxis. Here, global-in-time solutions are constructed under (nearly) optimal assumptions on the size of radial initial data. Moreover, criteria for blowup of solutions in terms of their local concerntariotions will be derived.
11:00
Neretin's group of spheromorphisms
Abstract
By way of shameless advertising for a TCC course I hope to give next term on the theory of totally disconnected locally compact groups, I will present two interesting and illuminating examples of such groups: the full automorphism group of a regular tree, and Neretin's group of spheromorphisms
When are two right angled Artin groups quasi-isometric?
Abstract
I will give a survey of known results about when two RAAGs are quasi-isometric, and will then describe a visual graph of groups decomposition of a RAAG (its JSJ tree of cylinders) that can often be used to determine whether or not two RAAGs are quasi-isometric.