Fractal-like actuator disc theory for optimal energy extraction
Dehtyriov, D Schnabl, A Vogel, C Draper, S Adcock, T Willden, R Journal of Fluid Mechanics volume 927 (30 Sep 2021)
Exponential error suppression for near-term quantum devices
Koczor, B Physical Review X volume 11 issue 3 (15 Sep 2021)
Tue, 02 Nov 2021

15:30 - 16:30
L4

Gromov-Witten invariants of blow-ups

Qaasim Shafi
(Imperial)
Abstract
Gromov-Witten invariants play an essential role in mirror symmetry and enumerative geometry. Despite this, there are few effective tools for computing Gromov-Witten invariants of blow-ups. Blow-ups of X can be rewritten as subvarieties of Grassmann bundles over X. In joint work with Tom Coates and Wendelin Lutz, we exploit this fact and extend the abelian/non-abelian correspondence, a modern tool in Gromov-Witten theory. Combining these two steps allows us to get at the genus 0 invariants of a large class of blow-ups.   
Tue, 12 Oct 2021

15:30 - 16:30
L5

The Mirror Clemens-Schmid Sequence

Alan Thompson
(Loughborough)
Abstract

I will present a four-term exact sequence relating the cohomology of a fibration to the cohomology of an open set obtained by removing the preimage of a general linear section of the base. This exact sequence respects three filtrations, the Hodge, weight, and perverse Leray filtrations, so that it is an exact sequence of mixed 
Hodge structures on the graded pieces of the perverse Leray filtration. I claim that this sequence should be thought of as a mirror to the Clemens-Schmid sequence describing the structure of a degeneration and formulate a "mirror P=W" conjecture relating the filtrations on each side. Finally, I will present evidence for this conjecture coming from the K3 surface setting. This is joint work with Charles F. Doran.

Balancing expressiveness and inexpressiveness in view design
Benedikt, M Bourhis, P Jachiet, L Tsamoura, E ACM Transactions on Database Systems volume 46 issue 4 (15 Nov 2021)
Simulating CXCR5 Dynamics in Complex Tissue Microenvironments
Cosgrove, J Alden, K Stein, J Coles, M Timmis, J Frontiers in Immunology volume 12 703088 (07 Sep 2021)

Towards the end of the eighteenth century, French mathematician and engineer Gaspard Monge considered a problem. If you have a lot of rubble, you would like to have a fort, and you do not like carrying rocks very far, how do you best rearrange your disorganised materials into organised walls? Over the two centuries since then, his work has been developed into the rich mathematical theory of optimal transport.

Thu, 14 Oct 2021
11:30
Virtual

Forking independence in the free group

Chloé Perin
(The Hebrew University of Jerusalem)
Abstract

Sela proved in 2006 that the (non abelian) free groups are stable. This implies the existence of a well-behaved forking independence relation, and raises the natural question of giving an algebraic description in the free group of this model-theoretic notion. In a joint work with Rizos Sklinos we give such a description (in a standard fg model F, over any set A of parameters) in terms of the JSJ decomposition of F over A, a geometric group theoretic tool giving a group presentation of F in terms of a graph of groups which encodes much information about its automorphism group relative to A. The main result states that two tuples of elements of F are forking independent over A if and only if they live in essentially disjoint parts of such a JSJ decomposition.

Estimating the number of undetected COVID-19 cases among travellers from mainland China
Bhatia, S Imai, N Cuomo-Dannenburg, G Baguelin, M Boonyasiri, A Cori, A Cucunubá, Z Dorigatti, I FitzJohn, R Fu, H Gaythorpe, K Ghani, A Hamlet, A Hinsley, W Laydon, D Nedjati-Gilani, G Okell, L Riley, S Thompson, H van Elsland, S Volz, E Wang, H Wang, Y Whittaker, C Xi, X Donnelly, C Ferguson, N Wellcome Open Research volume 5 143 (13 Sep 2021)
Subscribe to