Thu, 13 Oct 2016

17:15 - 18:15
L1

Fashion, Faith, and Fantasy in the New Physics of the Universe - Roger Penrose SOLD OUT

Roger Penrose
(University of Oxford)
Abstract

What can fashionable ideas, blind faith, or pure fantasy have to do with the scientific quest to understand the universe? Surely, scientists are immune to trends, dogmatic beliefs, or flights of fancy? In fact, Roger Penrose argues that researchers working at the extreme frontiers of mathematics and physics are just as susceptible to these forces as anyone else. In this lecture, based on his new book, Roger will argue that fashion, faith, and fantasy, while sometimes productive and even essential, may be leading today's researchers astray, most notably in three of science's most important areas - string theory, quantum mechanics, and cosmology. Yet Roger will also describe how fashion, faith, and fantasy have, ironically, also been invaluable in shaping his own work.

Roger will be signing copies of his book after the lecture.

This lecture is now SOLD OUT. Any questions, please email: @email

 

 

Mon, 05 Dec 2016

16:00 - 17:00
L4

Parabolic problems with critical growth

Anna Verde
Abstract

I will discuss on the existence and regularity results for the heat flow of the so called H-systems and for more general parabolic p-laplacian problems with critical growth.

Mon, 28 Nov 2016

15:30 - 16:30
L4

The Calderón problem for the fractional Laplacian

Mikko Salo
(University of Jyväskylä)
Abstract

We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in an arbitrary open subset of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calderón problem. This is a joint work with T. Ghosh (HKUST) and G. Uhlmann (Washington).
 

Mon, 31 Oct 2016

16:30 - 17:30
L4

High Ericksen number and the dynamical creation of defects in nematics

Arghir Zarnescu
(Basque Center for Applied Mathematics)
Abstract


We consider the Beris-Edwards model of liquid crystal dynamics. We study a non-dimensionalisation and regime suited for the study of defect patterns, that amounts to a combined high Ericksen and high Reynolds  number regime. 
We identify some of the flow mechanisms responsible for the appearance of localized gradients that increase in time.
This is joint work with Hao Wu (Fudan).
 

Mon, 10 Oct 2016

16:00 - 17:00
L4

Homogenization of thin structures in nonlinear elasticity - periodic and non-periodic

Igor Velcic
(University of Zagreb)
Abstract

We will give the results on the models of thin plates and rods in nonlinear elasticity by doing simultaneous homogenization and dimensional reduction. In the case of bending plate we are able to obtain the models only under periodicity assumption and assuming some special relation between the periodicity of the material and thickness of the body. In the von K\'arm\'an regime of rods and plates and in the bending regime of rods we are able to obtain the models in the general non-periodic setting. In this talk we will focus on the derivation of the rod model in the bending regime without any assumption on periodicity.

Numerous processes across both the physical and biological sciences are driven by diffusion, for example transport of proteins within living cells, and some drug delivery mechanisms. Diffusion is an unguided process which is of great importance at small spatial scales.

Thu, 24 Nov 2016

16:00 - 17:30
L4

The Randomised Heston model

Jack Jacquier
(Imperial College London)
Abstract

We propose a randomised version of the Heston model--a widely used stochastic volatility model in mathematical finance--assuming that the starting point of the variance process is a random variable. In such a system, we study the small- and large-time behaviours of the implied volatility, and show that the proposed randomisation generates a short-maturity smile much steeper (`with explosion') than in the standard Heston model, thereby palliating the deficiency of classical stochastic volatility models in short time. We precisely quantify the speed of explosion of the smile for short maturities in terms of the right tail of the initial distribution, and in particular show that an explosion rate of $t^\gamma$ (gamma in [0,1/2]) for the squared implied volatility--as observed on market data--can be obtained by a suitable choice of randomisation. The proofs are based on large deviations techniques and the theory of regular variations. Joint work with Fangwei Shi (Imperial College London)

Thu, 01 Dec 2016

16:00 - 17:30
L4

A Bayesian Methodology for Systemic Risk Assessment in Financial Networks

Luitgard A. M. Veraart
(LSE)
Abstract

We develop a Bayesian methodology for systemic risk assessment in financial networks such as the interbank market. Nodes represent participants in the network and weighted directed edges represent liabilities. Often, for every participant, only the total liabilities and total assets within this network are observable. However, systemic risk assessment needs the individual liabilities. We propose a model for the individual liabilities, which, following a Bayesian approach, we then condition on the observed total liabilities and assets and, potentially, on certain observed individual liabilities. We construct a Gibbs sampler to generate samples from this conditional distribution. These samples can be used in stress testing, giving probabilities for the outcomes of interest. As one application we derive default probabilities of individual banks and discuss their sensitivity with respect to prior information included to model the network. An R-package implementing the methodology is provided. (This is joint work with Axel Gandy (Imperial College London).)

Thu, 17 Nov 2016

16:00 - 17:30
L4

The existence of densities of BSDEs

Daniel Schwarz
(UCL)
Abstract

We introduce sufficient conditions for the solution of a multi-dimensional, Markovian BSDE to have a density. We show that a system of BSDEs possesses a density if its corresponding semilinear PDE exhibits certain regularity properties, which we verify in the case of several examples.

Subscribe to