Diffeomorphism-equivariant configuration spaces with twisted summable labels
Abstract
We construct the diffeomorphism-equivariant “scanning map” associated to the configuration spaces of manifolds with twisted summable labels. The scanning map is also functorial with respect to embeddings of manifolds. To adapt P. Salvatore's idea of non-commutative summation into twisted setting, we define a bundle of Fulton-MacPherson operads over a manifold M whose fibres are built within tangent spaces of M.