The aim of this talk is to present new results related to the length spectrum of random hyperbolic surfaces. The Weil-Petersson model is a beautiful probabilistic model that was popularised by Mirzakhani to study random hyperbolic surfaces. In this continuous model, it is easy to argue that there exists a density function V_g(l) which "counts" how many closed geodesics of length l an average surface of genus g contains. In the case where we only count simple geodesics (with no self-intersections), Mirzakhani proved explicit formulas for this density, writing it as a polynomial function that can be interpreted in terms of volumes of moduli spaces. I will present joint work with Nalini Anantharaman where we obtain new explicit formulas for any fixed topology. Notably, I will present new coordinate systems on Teichmüller spaces in which the Weil-Petersson volume has a surprisingly simple expression.
Though purely geometric, those results were obtained in a project related to the spectral gap of the Laplacian. I will present applications of the techniques presented in this talk to this problem at the RMT seminar. Both talks will be disjoint and independent, with the intention that they can be viewed either separately or together.