Fri, 01 Nov 2024

12:00 - 13:00
Quillen Room

The Bruhat-Tits building

Mick Gielen
(University of Oxford)
Abstract

The Bruhat-Tits building is a crucial combinatorial tool in the study of reductive p-adic groups and their representation theory. Given a p-adic group, its Bruhat-Tits building is a simplicial complex upon which it acts with remarkable properties. In this talk I will give an introduction to the Bruhat-Tits building by sketching its definition and going over some of its basic properties. I will then show the usefulness of the Bruhat-Tits by determining the maximal compact subgroups of a p-adic group up to conjugacy by using the Bruhat-Tits building.

Tue, 21 Jan 2025
15:00
L6

Counting non-simple closed geodesics on random hyperbolic surfaces

Laura Monk
Abstract
The aim of this talk is to present new results related to the length spectrum of random hyperbolic surfaces. The Weil-Petersson model is a beautiful probabilistic model that was popularised by Mirzakhani to study random hyperbolic surfaces. In this continuous model, it is easy to argue that there exists a density function V_g(l) which "counts" how many closed geodesics of length l an average surface of genus g contains. In the case where we only count simple geodesics (with no self-intersections), Mirzakhani proved explicit formulas for this density, writing it as a polynomial function that can be interpreted in terms of volumes of moduli spaces. I will present joint work with Nalini Anantharaman where we obtain new explicit formulas for any fixed topology. Notably, I will present new coordinate systems on Teichmüller spaces in which the Weil-Petersson volume has a surprisingly simple expression.
 
Though purely geometric, those results were obtained in a project related to the spectral gap of the Laplacian. I will present applications of the techniques presented in this talk to this problem at the RMT seminar. Both talks will be disjoint and independent, with the intention that they can be viewed either separately or together.
Thu, 28 Nov 2024
12:00
C6

Magnetic Brunn-Minkowski and Borell-Brascamp-Lieb inequalities on Riemannian manifolds

Rotem Assouline
(The Weizmann Institute of Science)
Abstract

The Brunn-Minkowski inequality gives a lower bound on the volume of the set of midpoints of line segments joining two sets. On a Riemannian manifold, line segments are replaced by geodesic segments, and the Brunn-Minkowski inequality characterizes manifolds with nonnegative Ricci curvature. I will present a generalization of the Riemannian Brunn-Minkowski inequality where geodesics are replaced by magnetic geodesics, which are minimizers of a functional given by length minus the integral of a fixed one-form on the manifold. The Brunn-Minkowski inequality is then equivalent to nonnegativity of a suitably defined magnetic Ricci curvature. More generally, I will present a magnetic version of the Borell-Brascamp-Lieb inequality of Cordero-Erausquin, McCann and Schmuckenschläger. The proof uses the needle decomposition technique.

Anisotropy distorts the spreading of a fixed volume porous gravity current
Benham, G Proceedings of the Royal Society A volume 479 issue 2279 20230271 (15 Nov 2023)
On wave-driven propulsion
Benham, G Devauchelle, O Thomson, S Journal of Fluid Mechanics volume 987 a44 (25 May 2024)
Categorical Landau paradigm for gapped phases
Bhardwaj, L Bottini, L Pajer, D Schafer-Nameki, S Physical Review Letters volume 133 issue 16 (16 Oct 2024)
Strong coupling yields abrupt synchronization transitions in coupled oscillators
Ocampo-Espindola, J Kiss, I Bick, C Wedgwood, K Physical Review Research volume 6 issue 3 033328 (01 Sep 2024)
Profinite rigidity of fibring
Hughes, S Kielak, D Revista Matemática Iberoamericana (30 Jan 2025)
Subscribe to