On multigrid methods in convex optimization
Abstract
The aim of this talk is to design an efficient multigrid method for constrained convex optimization problems arising from discretization of some underlying infinite dimensional problems. Due to problem dependency of this approach, we only consider bound constraints with (possibly) a linear equality constraint. As our aim is to target large-scale problems, we want to avoid computation of second
derivatives of the objective function, thus excluding Newton like methods. We propose a smoothing operator that only uses first-order information and study the computational efficiency of the resulting method. In the second part, we consider application of multigrid techniques to more general optimization problems, in particular, the topology design problem.