Stability and minimality for a nonlocal variational problem
Abstract
We discuss the local minimality of certain configurations for a nonlocal isoperimetric problem used to model microphase separation in diblock copolymer melts. We show that critical configurations with positive second variation are local minimizers of the nonlocal area functional and, in fact, satisfy a quantitative isoperimetric inequality with respect to sets that are $L^1$-close. As an application, we address the global and local minimality of certain lamellar configurations.