Wed, 22 May 2024

16:00 - 17:00
L6

Finite quotients of Coxeter groups

Sam Hughes
(University of Oxford)
Abstract

We will try to solve the isomorphism problem amongst Coxeter groups by looking at finite quotients.  Some success is found in the classes of affine and right-angled Coxeter groups.  Based on joint work with Samuel Corson, Philip Moeller, and Olga Varghese.

Neuronal activity induces symmetry breaking in neurodegenerative disease spreading
Alexandersen, C Goriely, A Bick, C Journal of Mathematical Biology volume 89 issue 1 (13 May 2024)
Thu, 02 May 2024

17:00 - 18:00
L4

Cohomogeneity one Ricci solitons and Hamiltonian formalism

Qiu Shi Wang
( Oxford)
Abstract
A Riemannian manifold is said to be of cohomogeneity one if there is a Lie group acting on it by isometries with principal orbits of codimension one. On such manifolds, the Ricci soliton equation simplifies to a system of ODEs, which can be considered as a Hamiltonian system. Various conserved quantities, such as superpotentials, can then be defined to find cases in which the system is explicitly integrable.

There is a considerable body of work, primarily due to A. Dancer and M. Wang, on the analogous procedure for the Einstein equation.

In this talk, I will introduce the abovementioned methods and illustrate with examples their usefulness in finding explicit formulae for Ricci solitons. I will also discuss the classification of superpotentials.


 

Thu, 13 Jun 2024

14:00 - 15:00
L5

Incidence bounds via extremal graph theory

Benny Sudakov
(ETH Zurich)
Abstract

The study of counting point-hyperplane incidences in the $d$-dimensional space was initiated in the 1990's by Chazelle and became one of the central problems in discrete geometry. It has interesting connections to many other topics, such as additive combinatorics and theoretical computer science. Assuming a standard non-degeneracy condition, i.e., that no $s$ points are contained in the intersection of $s$ hyperplanes, the currently best known upper bound on the number of incidences of $m$ points and $n$ hyperplanes in $\mathbb{R}^d$ is $O((mn)^{1-1/(d+1)}+m+n)$. This bound by Apfelbaum and Sharir is based on geometrical space partitioning techniques, which apply only over the real numbers.

In this talk, we discuss a novel combinatorial approach to study such incidence problems over arbitrary fields. Perhaps surprisingly, this approach matches the best known bounds for point-hyperplane incidences in $\mathbb{R}^d$ for many interesting values of $m, n, d$. Moreover, in finite fields our bounds are sharp as a function of $m$ and $n$ in every dimension. This approach can also be used to study point-variety incidences and unit-distance problem in finite fields, giving tight bounds for both problems under a similar non-degeneracy assumption. Joint work with A. Milojevic and I. Tomon.

Publisher Correction: Semaphorin 3A causes immune suppression by inducing cytoskeletal paralysis in tumour-specific CD8<sup>+</sup> T cells.
Barnkob, M Michaels, Y André, V Macklin, P Gileadi, U Valvo, S Rei, M Kulicke, C Chen, J Jain, V Woodcock, V Colin-York, H Hadjinicolaou, A Kong, Y Mayya, V Mazet, J Mead, G Bull, J Rijal, P Pugh, C Townsend, A Gérard, A Olsen, L Fritzsche, M Fulga, T Dustin, M Jones, E Cerundolo, V Nature communications volume 15 issue 1 3448 (24 Apr 2024)
Cut-and-paste for impulsive gravitational waves with $\Lambda$: the mathematical analysis
Sämann, C Schinnerl, B Steinbauer, R Švarc, R Letters in Mathematical Physics volume 114 issue 2 (24 Apr 2024)
Mon, 06 May 2024
15:30
L5

Factorization algebras in quite a lot of generality

Clark Barwick
(University of Edinburgh)
Abstract

The objects of arithmetic geometry are not manifolds. Some concepts from differential geometry admit analogues in arithmetic, but they are not straightforward. Nevertheless, there is a growing sense that the right way to understand certain Langlands phenomena is to study quantum field theories on these objects. What hope is there of making this thought precise? I will propose the beginnings of a mathematical framework via a general theory of factorization algebras. A new feature is a subtle piece of additional structure on our objects – what I call an _isolability structure_ – that is ordinarily left implicit.

Mon, 29 Apr 2024
16:30
L5

Formality of $E_n$-algebras and cochains on spheres

Gijs Heuts
(University of Utrecht)
Abstract

It is a classical fact of rational homotopy theory that the $E_\infty$-algebra of rational cochains on a sphere is formal, i.e., quasi-isomorphic to the cohomology of the sphere. In other words, this algebra is square-zero. This statement fails with integer or mod p coefficients. We show, however, that the cochains of the n-sphere are still $E_n$-trivial with coefficients in arbitrary cohomology theories. This is a consequence of a more general statement on (iterated) loops and suspensions of $E_n$-algebras, closely related to Koszul duality for the $E_n$-operads. We will also see that these results are essentially sharp: if the R-valued cochains of $S^n$ have square-zero $E_{n+1}$-structure (for some rather general ring spectrum R), then R must be rational. This is joint work with Markus Land.

Sort & Slice: A Simple and Superior Alternative to Hash-Based Folding for Extended-Connectivity Fingerprints.
Dablander, M Hanser, T Lambiotte, R Morris, G Journal of Cheminformatics volume abs/2403.17954 (01 Jan 2024)
Unit fractions with shifted prime denominators
Bloom, T Proceedings of the Royal Society of Edinburgh Section A Mathematics 1-11 (02 Apr 2024)
Subscribe to