Morse Theory for Group Presentations and Applications
Abstract
Discrete Morse theory serves as a combinatorial tool for simplifying the structure of a given (regular) CW-complex up to homotopy equivalence, in terms of the critical cells of discrete Morse functions. In this talk, I will introduce a refinement of this theory that not only ensures homotopy equivalence with the simplified CW-complex but also guarantees a Whitehead simple homotopy equivalence. Furthermore, it offers an explicit description of the construction of the simplified Morse complex and provides bounds on the dimension of the complexes involved in the Whitehead deformation.
This refined approach establishes a suitable theoretical framework for addressing various problems in combinatorial group theory and topological data analysis. I will show applications of this technique to the Andrews-Curtis conjecture and computational methods for inferring the fundamental group of point clouds.
This talk is based on the article: Fernandez, X. Morse theory for group presentations. Trans. Amer. Math. Soc. 377 (2024), 2495-2523.
Topology for spatial data from oncology and neuroscience
Abstract
State-of-the art experimental data promises exquisite insight into the spatial heterogeneity in tissue samples. However, the high level of detail in such data is contrasted with a lack of methods that allow an analysis that fully exploits the available spatial information. Persistent Homology (PH) has been very successfully applied to many biological datasets, but it is typically limited to the analysis of single species data. In the first part of my talk, I will highlight two novel techniques in relational PH that we develop to encode spatial heterogeneity of multi species data. Our approaches are based on Dowker complexes and Witness complexes. We apply the methods to synthetic images generated by an agent-based model of tumour-immune cell interactions. We demonstrate that relational PH features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. I will present an extension to our pipeline which combines graph neural networks (GNN) with local relational PH and significantly enhances the performance of the GNN on the synthetic data. In the second part of the talk, I will showcase a noise-robust extension of Reani and Bobrowski’s cycle registration algorithm (2023) to reconstruct 3D brain atlases of Drosophila flies from a sequence of μ-CT images.
Persistent Minimal Models in Rational Homotopy Theory
Abstract
Local systems for periodic data
Abstract
Periodic point clouds naturally arise when modelling large homogenous structures like crystals. They are naturally attributed with a map to a d-dimensional torus given by the quotient of translational symmetries, however there are many surprisingly subtle problems one encounters when studying their (persistent) homology. It turns out that bisheaves are a useful tool to study periodic data sets, as they unify several different approaches to study such spaces. The theory of bisheaves and persistent local systems was recently introduced by MacPherson and Patel as a method to study data with an attributed map to a manifold through the fibres of this map. The theory allows one to study the data locally, while also naturally being able to appeal to local systems of (co)sheaves to study the global behaviour of this data. It is particularly useful, as it permits a persistence theory which generalises the notion of persistent homology. In this talk I will present recent work on the theory and implementation of bisheaves and local systems to study 1-periodic simplicial complexes. Finally, I will outline current work on generalising this theory to study more general periodic systems for d-periodic simplicial complexes for d>1.
Mathematrix: Taboo Topics
Abstract
Join us for our first event of term to discuss those topics which are slightly taboo. We’ll be talking about periods, pregnancy, chronic illness, gender identity... This event is open to all but we will be taking extra steps to make sure it is a safe space for everyone.