Mathematrix: Taboo Topics
Abstract
Join us for our first event of term to discuss those topics which are slightly taboo. We’ll be talking about periods, pregnancy, chronic illness, gender identity... This event is open to all but we will be taking extra steps to make sure it is a safe space for everyone.
Bi-interpretability and elementary definability of Chevalley groups
Abstract
We prove that any adjoint Chevalley group over an arbitrary commutative ring is regularly bi-interpretable with this ring. The same results hold for central quotients of arbitrary Chevalley groups and for Chevalley groups with bounded generation.
Also, we show that the corresponding classes of Chevalley groups (or their central quotients) are elementarily definable and even finitely axiomatizable.
16:00
Twisted correlations of the divisor function via discrete averages of $\operatorname{SL}_2(\mathbb{R})$ Poincaré series
Abstract
The talk is based on joint work with Lasse Grimmelt. We prove a theorem that allows one to count solutions to determinant equations twisted by a periodic weight with high uniformity in the modulus. It is obtained by using spectral methods of $\operatorname{SL}_2(\mathbb{R})$ automorphic forms to study Poincaré series over congruence subgroups while keeping track of interactions between multiple orbits. This approach offers increased flexibility over the widely used sums of Kloosterman sums techniques. We give applications to correlations of the divisor function twisted by periodic functions and the fourth moment of Dirichlet $L$-functions on the critical line.
16:00
Inhomogeneous multiplicative diophantine approximation
Abstract
Introducing an inhomogeneous shift allows for generalisations of many multiplicative results in diophantine approximation. In this talk, we discuss an inhomogeneous version of Gallagher's theorem, established by Chow and Technau, which describes the rates for which we can approximate a typical product of fractional parts. We will sketch the methods used to prove an earlier version of this result due to Chow, using continued fraction expansions and geometry of numbers to analyse the structure of Bohr sets and bound sums of reciprocals of fractional parts.
The bifiltration of a relation, extended Dowker duality and studying neural representations
Abstract
To neural activity one may associate a space of correlations and a space of population vectors. These can provide complementary information. Assume the goal is to infer properties of a covariate space, represented by ochestrated activity of the recorded neurons. Then the correlation space is better suited if multiple neural modules are present, while the population vector space is preferable if neurons have non-convex receptive fields. In this talk I will explain how to coherently combine both pieces of information in a bifiltration using Dowker complexes and their total weights. The construction motivates an interesting extension of Dowker’s duality theorem to simplicial categories associated with two composable relations, I will explain the basic idea behind it’s proof.