Thu, 08 Feb 2024

11:00 - 12:00
C3

Model companions of fields with no points in hyperbolic varieties

Michal Szachniewicz
(University of Oxford)
Abstract

This talk is based on a joint work with Vincent Jinhe Ye. I will define various classes of hyperbolic varieties (Broody hyperbolic, algebraically hyperbolic, bounded, groupless) and discuss existence of model companions of classes of fields that exclude them. This is related to moduli spaces of maps to hyperbolic varieties and to the (open) question whether the above mentioned hyperbolicity notions are in fact equivalent.

Tue, 11 Jun 2024
15:00
L6

TBD

Motiejus Valiunas
Tue, 04 Jun 2024
15:00
L6

Mapping class group orbit closures for non-orientable surfaces

Irene Pasquinelli
Abstract

The space of measured laminations on a hyperbolic surface is a generalisation of the set of weighted multi curves. The action of the mapping class group on this space is an important tool in the study of the geometry of the surface. 
For orientable surfaces, orbit closures are now well-understood and were classified by Lindenstrauss and Mirzakhani. In particular, it is one of the pillars of Mirzakhani’s curve counting theorems. 
For non-orientable surfaces, the behaviour of this action is very different and the classification fails. In this talk I will review some of these differences and describe mapping class group orbit closures of (projective) measured laminations for non-orientable surfaces. This is joint work with Erlandsson, Gendulphe and Souto.

Tue, 28 May 2024
15:00
L6

Quasiisometric embeddings of groups into finite products of binary trees

Patrick Nairne
Abstract

If a group quasiisometrically embeds into a finite product of infinite valence trees then a number of things are implied; for example, the group will have finite Assouad-Nagata dimension and finite asymptotic dimension. An even stronger statement is that the group quasiisometrically embeds into a finite product of uniformly bounded valence trees. The research on which groups quasiisometrically embed into finite products of uniformly bounded valence trees is limited, however a notable result of Buyalo, Dranishnikov and Schroeder from 2007 proves that all hyperbolic groups do admit these quasiisometric embeddings. In a recently released preprint, I extend their result to cover groups which are relatively hyperbolic with respect to virtually abelian peripheral subgroups. 

This talk will focus on the ideas at the core of Buyalo, Dranishnikov and Schroeder’s result and the extension that I proved, and in particular I will attempt to provide a general framework for upgrading quasiisometric embeddings into infinite valence trees so that they are now quasiisometric embeddings into uniformly bounded valence trees. The central concept is called a diary which I will define. 

Tue, 21 May 2024
15:00
L5

Rigidity and automorphisms of group von Neumann algebras

Denis Osin
Abstract

I will survey some recent results on rigidity and automorphisms of von Neumann algebras of groups with Kazhdan property (T) obtained in a series of joint papers with I. Chifan, A. Ioana, and B. Sun. Specifically, we show that certain groups, constructed via a group-theoretic version of Dehn filling in 3-manifolds, satisfy several conjectures proposed by A. Connes, V. Jones, and S. Popa. Previously, no nontrivial examples of groups satisfying these conjectures were known. At the core of our approach is the new notion of a wreath-like product of groups, which seems to be of independent interest.

Tue, 14 May 2024
15:00
L6

Extension of Möbius boundary homeomorphisms

Urs Lang
Abstract
In this talk, I will review recent results of K. Biswas. It is an open problem whether 
every Möbius homeomorphism between the visual boundaries of two Hadamard 
manifolds of curvature at most -1 extends to an isometry between them. A positive 
answer would resolve the long-standing marked length spectrum rigidity conjecture 
of Burns-Katok for closed negatively curved manifolds. Biswas' results yield an 
isometry between certain functorial thickenings of the manifolds, which lie within 
uniformly bounded distance and can be identified with their injective hulls.
Tue, 30 Apr 2024
15:00
L6

Graph products and measure equivalence

Camille Horbez
Abstract

Measure equivalence was introduced by Gromov as a measure-theoretic analogue to quasi-isometry between finitely generated groups. In this talk I will present measure equivalence classification results for right-angled Artin groups, and more generally graph products. This is based on joint works with Jingyin Huang and with Amandine Escalier. 

Wed, 28 Feb 2024
15:00
Lecture room 5

Mathematics of magic angles for twisted bilayer graphene.

Prof Maciej Zworski
(University of California, Berkeley)
Further Information

This is a joint seminar with Random Matrix Theory and Oxford Centre for Nonlinear Partial Differential Equations.

Abstract

Magic angles refer to a remarkable theoretical (Bistritzer--MacDonald, 2011) and experimental (Jarillo-Herrero et al 2018) discovery, that two sheets of graphene twisted by a certain (magic) angle display unusual electronic properties such as superconductivity.

 

Mathematically, this is related to having flat bands of nontrivial topology for the corresponding periodic Hamiltonian and their existence be shown for the chiral model of twisted bilayer graphene (Tarnopolsky-Kruchkov-Vishwanath, 2019). A spectral characterization of magic angles (Becker--Embree--Wittsten--Z, 2021, Galkowski--Z, 2023) also produces complex values and the distribution of their reciprocals looks remarkably like a distribution of scattering resonances for a two dimensional problem, with the real magic angles corresponding to anti-bound states. I will review various results on that distribution as well as on the properties of the associated eigenstates.

 

The talk is based on joint works with S Becker, M Embree, J Galkowski, M Hitrik, T Humbert and J Wittsten

Are sketch-and-precondition least squares solvers numerically stable?
Meier, M Nakatsukasa, Y Townsend, A Webb, M SIAM Journal on Matrix Analysis and Applications volume 45 issue 2 905-929 (24 Apr 2024)
Mon, 12 Feb 2024
15:30
L4

A filtration of handlebody Teichmüller space

Ric Wade
((Oxford University))
Abstract

The handlebody group is defined to be the mapping class group of a handelbody (rel. boundary). It is a subgroup of the mapping class group of the surface of the handlebody, and maps onto the outer automorphism group of its fundamental group (the free group of rank equal to its genus). 

Recently Hainaut and Petersen described a subspace of moduli space forming an orbifold classifying space for the handlebody group, and combined this with work of Chan-Galatius-Payne to construct cohomology classes in the group. I will talk about how one can build on their ideas to define a cocompact EG for the handlebody group inside Teichmüller space. This is a manifold with boundary and comes with a filtration by labelled disk systems which we call the `RGB (red-green-blue) disk complex.' I will describe this filtration, use it to describe the boundary of the manifold, and speculate about potential applications to duality results. Based on work-in-progress with Dan Petersen.

Subscribe to