Tue, 13 Feb 2024
15:00
L6

Asymptotic mapping class groups of Cantor manifolds and their finiteness properties

Nansen Petrosyan
Abstract

We introduce a new class of groups with Thompson-like group properties. In the surface case, the asymptotic mapping class group contains mapping class groups of finite type surfaces with boundary. In dimension three, it contains automorphism groups of all finite rank free groups. I will explain how asymptotic mapping class groups act on a CAT(0) cube complex which allows us to show that they are of type F_infinity. 

This is joint work with Javier Aramayona, Kai-Uwe Bux, Jonas Flechsig and Xaolei Wu.

Tue, 23 Jan 2024
15:00
L6

Cocycle and orbit equivalence superrigidity for measure preserving actions

Daniel Drimbe
Abstract

The classification of measure preserving actions up to orbit equivalence has attracted a lot of interest in the last 25 years. The goal of this talk is to survey the major discoveries in the field, including Popa's cocycle and orbit equivalence superrigidity theorem and discuss some recent superrigidity results for dense subgroups of Lie groups acting by translation.

Tue, 16 Jan 2024
15:00
L6

Profinite invariants of fibered groups

Monika Kudlinska
Abstract

A central question in infinite group theory is to determine how much global information about a group is encoded in its set of finite quotients. In this talk, we will discuss this problem in the case of algebraically fibered groups, which naturally generalise fundamental groups of compact manifolds that fiber over the circle. The study of such groups exploits the relationships between the geometry of the classifying space, the dynamics of the monodromy map, and the algebra of the group, and as such draws from all of these areas.

Mon, 26 Feb 2024
15:30
L4

Morava K-theory of infinite groups and Euler characteristic

Irakli Patchkoria
(University of Aberdeen)
Abstract

Given an infinite discrete group G with a finite model for the classifying space for proper actions, one can define the Euler characteristic of G and the orbifold Euler characteristic of G. In this talk we will discuss higher chromatic analogues of these invariants in the sense of stable homotopy theory. We will study the Morava K-theory of G and associated Euler characteristic, and give a character formula for the Lubin-Tate theory of G. This will generalise the results of Hopkins-Kuhn-Ravenel from finite to infinite groups and the K-theoretic results of Adem, Lück and Oliver from chromatic level one to higher chromatic levels. At the end we will mention explicit computations for some arithmetic groups and mapping class groups in terms of class numbers and special values of zeta functions. This is all joint with Wolfgang Lück and Stefan Schwede.

Mon, 22 Jan 2024
15:30

Surface automorphisms and elementary number theory

Greg McShane
(Universite Grenoble-Alpes)
Abstract
The modular surface $\mathbb{H}/\Gamma,\, \Gamma= \mathrm{SL}(2,\mathbb{Z})$ has many covers - for example the three punctured torus $\mathbb{H}/\Gamma(2)$ and the once punctured torus $\mathbb{H}/\Gamma'$. We will discuss how classical Diophantine approximation can be interpreted in terms of the behaviour of geodesics on the once punctured torus and a geometric reformulation of the Frobenius uniqueness conjecture.
We will then give an account of two theorems of Fermat in terms of   the automorphisms of $\mathbb{H}/\Gamma(2)$:
- if $p$ is a prime such that $4|(p-1)$ then  can be written as a   sum of squares $p = c^2 + d^2$
- if $p$ is a prime such that $3|(p-1)$ then  can be written as  $  p = c^2 +cd +  d^2$
Finally we will discuss possible extensions to surfaces of the for  m $\mathbb{H}/\Gamma_0(N)$.
 
Mon, 19 Feb 2024
15:30
L4

Maps between spherical group algebras

Thomas Nikolaus
(Universitaet Muenster)
Abstract

I will speak about a central question in higher algebra (aka brave new algebra), namely which rings or schemes admit 'higher models', that is lifts to the sphere spectrum. This question is in some sense very classical, but there are many open questions. These questions are closely related to questions about higher versions of prismatic cohomology and delta ring, asked e.g. by Scholze and Lurie. Concretely we will consider the case of group algebras and explain how to understand maps between lifts of group algebras to the sphere spectrum. The results we present are joint with Carmeli and Yuan and on the prismatic side with Antieau and Krause.

Mon, 29 Jan 2024
15:30
L4

Categorifying the four color theorem with applications to Gromov-Witten theory

Scott Baldridge
(Louisiana State University)
Abstract
The four color theorem states that each bridgeless planar graph has a proper $4$-face coloring. It can be generalized to certain types of CW complexes of any closed surface for any number of colors, i.e., one looks for a coloring of the 2-cells (faces) of the complex with $m$ colors so that whenever two 2-cells are adjacent to a 1-cell (edge), they are labeled different colors.

In this talk, I show how to categorify the $m$-color polynomial of a surface with a CW complex. This polynomial is based upon Roger Penrose’s seminal 1971 paper on abstract tensor systems and can be thought of as the ``Jones polynomial’’ for CW complexes. The homology theory that results from this categorification is called the bigraded $m$-color homology and is based upon a topological quantum field theory (that will be suppressed from this talk due to time). The construction of this homology shares some similar features to the construction of Khovanov homology—it has a hypercube of states, multiplication and comultiplication maps, etc. Most importantly, the homology is the $E_1$ page of a spectral sequence whose $E_\infty$ page has a basis that can be identified with proper $m$-face colorings, that is, each successive page of the sequence provides better approximations of $m$-face colorings than the last. Since it can be shown that the $E_1$ page is never zero, it is safe to say that a non-computer-based proof of the four color theorem resides in studying this spectral sequence! (This is joint work with Ben McCarty.)

If time, I will relate this work to the study of the moduli space of stable genus $g$ curves with $n$ marked points. Using Strebel quadratic differentials, one can identify this moduli space with a subspace of the space of metric ribbon graphs with labeled boundary components. Proper $m$-face coloring in this setup is, in a sense, studying points in the space of metric ribbon graphs where similarly-colored boundaries (marked points) don’t get ``too close’’ to each other. We will end with some speculations about what this might mean for Gromov-Witten theory of Calabi-Yau manifolds.
 
Note to students: This talk will be hands-on with ideas explained through the calculation of examples. Graduate students and researchers who are interested in graph theory, topology, or representation theory are encouraged to attend.   
 
Mon, 15 Jan 2024
15:30

Invariant splittings of HFK of satellite knots

Sungkyung Kang
((Oxford University))
Abstract

Involutive knot Floer homology, a refinement of knot Floer theory, is a powerful knot invariant which was used to solve several long-standing problems, including the one-is-not-enough result for 4-manifolds with boundary. In this talk, we show that if the involutive knot Floer homology of a knot K admits an invariant splitting, then the induced splitting if the knot Floer homology of P(K), for any pattern P, can be made invariant under its \iota_K involution. As an application, we construct an infinite family of examples of pairs of exotic contractible 4-manifolds which survive one stabilization, and observe that some of them are potential candidates for surviving two stabilizations.
 

A Functional Approach to FBSDEs and Its Application in Optimal Portfolios
Liang, G Lyons, T Qian, Z (19 Nov 2010)
Backward stochastic dynamics on a filtered probability space
Liang, G Lyons, T Qian, Z (02 Apr 2009)
Subscribe to