Tue, 04 Nov 2025
12:30
C3

How General Relativity shapes our universe

Alice Luscher, Mathematical Physics
Abstract

Einstein’s theory of general relativity reshaped our understanding of the universe. Instead of thinking of gravity as a force, Einstein showed it is the bending and warping of space and time caused by mass and energy. This radical idea not only explained how planets orbit stars, but also opened the door to astonishing predictions. In this seminar we will explore some of its most fascinating consequences from the expansion of the universe, to gravitational waves, and the existence of black holes.

Tue, 21 Oct 2025
12:30
C3

Mathematical modelling of a mass-conserving electrolytic cell

Georgina Ryan, OCIAM
Abstract

The electrochemical processes in electrolytic cells are the basis for modern energy technology such as batteries. Electrolytic cells consist of an electrolyte (an salt dissolved in solution), two electrodes, and a battery. The Poisson–Nernst–Planck equations are the simplest mathematical model of steady state ionic transport in an electrolytic cell. We find the matched asymptotic solutions for the ionic concentrations and electric potential inside the electrolytic cell with mass conservation and known flux boundary conditions. The mass conservation condition necessitates solving for a higher order solution in the outer region. Our results provide insight into the behaviour of an electrochemical system with a known voltage and current, which are both experimentally measurable quantities.

Fri, 17 Oct 2025

14:00 - 15:00
L1

The Art of Maths Communication

Abstract

Join bestselling author Simon Singh and Oxford mathematician turned educator Junaid Mubeen for a session on maths communication! Learn how to present mathematics in a way that is both accessible and engaging, and how to apply these principles in a teaching context. Simon and Junaid will draw on their experiences in the Parallel Academy https://parallel.org.uk, an online initiative they set up in 2023, which has since grown to support thousands of keen and talented students to pursue maths beyond the curriculum. 

Somewhere on some deserted shore is some mathematics.

Mon, 01 Dec 2025
16:00
C3

Classification of real rank zero C*-algebras with finitely many ideals

Søren Eilers
(Unviersity of Copenhagen)
Abstract

With the classification theory of simple and nuclear C*-algebras of real rank zero advanced to a level which may very well be final, it is natural to wonder what happens when one allows ideals, but not too many of them. Contrasting the simple case, the K-theoretical classification theory for real rank zero C*-algebras with finitely many ideals is only satisfactorily developed in subcases, and in many settings it is even unclear and/or disputed which flavor of K-theory to use.

Restricting throughout to the setting of real rank zero, Søren Eilers will compare what is known of the classification of graph C*-algebras and of approximately subhomogeneous C*-algebras, with an emphasis on what kind of conclusion can be extracted from restrictions on the complexity of the ideal lattice. The results presented are either more than a decade old or joint with An, Liu and Gong.

Thu, 04 Dec 2025
14:00
L4

On the Categorical ’t Hooft Expansion

Niklas Garner
Abstract

The ’t Hooft expansion is a powerful organizational framework for understanding QFTs as perturbations away from the large N limit and has deep connections to string theory and holography. In this talk, I will discuss categorical aspects of the ’t Hooft expansion, i.e. what one learns about topological defects from the ’t Hooft expansion and, correspondingly, topological strings and twisted holography. This talk is based off the paper arXiv:2411.00760 from last year as well as the more recent review paper arXiv:2511.19776.

Thu, 27 Nov 2025
14:00
L4

Super-(conformal) monodromy defects

Andrea Conti (University of Oviedo)
Abstract
Recently, there has been an increasing interest in the study of defects in quantum field theories, with holography providing a powerful framework to explore various aspects of these super-(conformal) gauge theories.
In this talk, I will discuss supergravity solutions that are dual to codimension-2 superconformal monodromy defects. These solutions are obtained using gauged supergravities in D=4,5,6 and 7 dimensions. I will present a prescription to compute the defect entanglement entropy, outlining the renormalization procedure needed to regularise its divergencies, which I will discuss in detail. In some cases, we are also able to express this quantity in terms of the free energy/Weyl anomaly  and the conformal weight of the defect. In addition, we examine whether the defect entanglement entropy obeys a monotonicity theorem under RG flows.
If time allows, I will also discuss some new results for non-conformal monodromy defects.
Thu, 20 Nov 2025
14:00
L6

Renormalization from Unitarity

Clément Virally
Abstract

Renormalization group (RG) flow is a central aspect of our modern understanding of QFT. We may wonder about the relationship of renormalization to some of the other properties of a QFT, and if we can reconstruct RG flow from these properties. It has recently been proposed by Chavda, McLoughlin, Mizera and Staunton in [2510.25822] and [2511.10613] that unitarity can give us at least a part of RG flow, which is known as the Unitarity Flow Conjecture. In this talk, I will summarize the central ideas of this conjecture, and provide some evidence for it.

Subscribe to