Tue, 21 Nov 2023

14:00 - 15:00
L5

Proximal Galekin: A Structure-Preserving Finite Element Method For Pointwise Bound Constraints

Brendan Keith
(Brown University)
Abstract

The proximal Galerkin finite element method is a high-order, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinitedimensional function spaces. In this talk, we will introduce the proximal Galerkin method and apply it to solve free-boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The proximal Galerkin framework is a natural consequence of the latent variable proximal point (LVPP) method, which is an stable and robust alternative to the interior point method that will also be introduced in this talk.

In particular, LVPP is a low-iteration complexity, infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout the talk, we will arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and an infinite-dimensional Lie group; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization.

The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis. This talk is based on [1].

 

Keywords: pointwise bound constraints, bound-preserving discretization, entropy regularization, proximal point

 

Mathematics Subject Classifications (2010): 49M37, 65K15, 65N30

 

References  [1] B. Keith, T.M. Surowiec. Proximal Galerkin: A structure-preserving finite element method for pointwise bound constraints arXiv preprint arXiv:2307.12444 2023.

Brown University Email address: @email

Simula Research Laboratory Email address: @email

Tue, 10 Oct 2023

14:00 - 14:30
L4

A sparse hp-finite element method for the Helmholtz equation posed on disks, annuli and cylinders

Ioannis Papadopoulos
(Imperial)
Abstract

We introduce a sparse and very high order hp-finite element method for the weak form of the Helmholtz equation.  The domain may be a disk, an annulus, or a cylinder. The cells of the mesh are an innermost disk (omitted if the domain is an annulus) and concentric annuli.

We demonstrate the effectiveness of this method on PDEs with radial direction discontinuities in the coefficients and data. The discretization matrix is always symmetric and positive-definite in the positive-definite Helmholtz regime. Moreover, the Fourier modes decouple, reducing a two-dimensional PDE solve to a series of one-dimensional solves that may be computed in parallel, scaling with linear complexity. In the positive-definite case, we utilize the ADI method of Fortunato and Townsend to apply the method to a 3D cylinder with a quasi-optimal complexity solve.

Patterns in Science and Art -  Liliane Lijn, Marcus du Sautoy and Fatos Ustek with Conrad Shawcross

Thursday 28th September, 5.30-6.45pm
Mathematical Institute, Oxford

The search for and creation of patterns is intrinsic to both science and art. But so is the desire to understand how and why those patterns break down and to uncover the implications for the scientist and the artist.

Tue, 03 Oct 2023
17:00
Lecture Theatre 1

Around the World in 80 Games - Marcus du Sautoy

Marcus du Sautoy
(University of Oxford)
Further Information

Oxford Mathematics Public Lecture: Around the World in 80 Games - Marcus du Sautoy

Join Marcus as he takes us on a mathematical journey across the centuries and through countries, continents and cultures in search of the games we love to play.  Based on his new book, he looks at the way mathematics has always been deeply intertwined with games and investigates how games themselves can provide us with opportunities for mathematical insight into the world.

From backgammon to chess, Catan to Snakes and Ladders, games are not simply an enjoyable diversion. They are rather the height of human ingenuity. Ours is the species that loves playing games: not homo sapiens but homo ludens.  The lecture is suitable for everyone ‘from age 8 to 108.’  Come and join Marcus on his journey Around the World in 80 Games. You simply can’t lose…

Marcus du Sautoy is Charles Simonyi Professor for the Public Understanding of Science in Oxford and Professor of Mathematics.

Please email @email to register.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on 24th October at 5pm, and can be watched any time after.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites.
Bowman, C Experimental & applied acarology volume 91 issue 2 139-235 (07 Oct 2023)

About the role
We are seeking applications for the post of Area Coordinator for Oxfordshire and Buckinghamshire. This post is funded by a grant to the University of Oxford from the Advanced Mathematics Support Programme (AMSP), which in turn is supported by a grant from the Department for Education.  This is a part-time, fixed-term position and is available until 31st July 2024 with the possibility to extend subject to funding agreement. We are looking to have someone in post as soon as possible, but no later than a January 2024 start.

Tue, 27 Feb 2024
15:00
L6

Sublinear rigidity of lattices in semisimple Lie groups

Ido Grayevsky
Abstract

I will talk about the coarse geometry of lattices in real semisimple Lie groups. One great result from the 1990s is the quasi-isometric rigidity of these lattices: any group that is quasi-isometric to such a lattice must be, up to some minor adjustments, isomorphic to lattice in the same Lie group. I present a partial generalization of this result to the setting of Sublinear Bilipschitz Equivalences (SBE): these are maps that generalize quasi-isometries in some 'sublinear' fashion.

Please note that Compass have temporarily increased their notice period for all orders for their Occasions catering service. This includes working breakfasts, lunches, hot drinks, pastries etc.

The notice period is now 6 working days until 2 October 2023. At this point it will revert to the previous level of 3 working days.

Image: Giuseppe Arcimboldo - The Summer

Thu, 28 Sep 2023
17:30
Lecture Theatre 1

Patterns in Science and Art -  Liliane Lijn, Marcus du Sautoy and Fatos Ustek with Conrad Shawcross

 Liliane Lijn, Marcus du Sautoy and Fatos Ustek with Conrad Shawcross
Further Information

The search for and creation of patterns is intrinsic to both science and art. But so is the desire to understand how and why those patterns break down and to uncover the implications for the scientist and the artist.

Artist Liliane Lijn, curator Fatos Ustek and mathematician Marcus du Sautoy will share their experience and understanding of pattern and where it has taken them in their scientific and artistic careers. Conrad Shawcross will chair the discussion and provide his own unique perspective as represented by his 'Cascading Principles' Exhibition.

Liliane Lijn is an American-born artist who has exhibited at the Venice Biennale, and was recently short listed for her design for the Fourth Plinth in Trafalgar Square. Marcus Sautoy is a mathematician and Professor for the Public Understanding of Science in Oxford. Fatos Ustek is curator of the 'Cascading Principles' exhibition and curator of the sculpture park at Frieze London. Conrad Shawcross is an artist specialising in mechanical sculptures based on philosophical and scientific ideas.

Please email @email to register.

Postdoctoral Research Fellow in Mathematical modelling at Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Japan

Deadline: 30/9/2023  

Details

Logo

Subscribe to