Feynman symmetries of the Martin and c_2 invariants of regular graphs
Panzer, E Yeats, K Combinatorial Theory volume 5 issue 1 (15 Mar 2025)
Thu, 18 May 2023
18:30
Science Museum, London, SW7

Oxford Mathematics London Public Lecture: The Magic of the Primes - James Maynard with Hannah Fry SOLD OUT

James Maynard and Hannah Fry
Further Information

Please note this lecture is at the Science Museum, London, SW7.

In July 2022 Oxford Mathematician James Maynard received the Fields Medal, the highest honour for a mathematician under the age of 40, for his groundbreaking work on prime numbers. In this lecture he will explain the fascinations and frustrations of the primes before sitting down with Hannah to discuss his work and his life. 

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Primes image

 

PARTIAL EVALUATIONS AND THE COMPOSITIONAL STRUCTURE OF THE BAR CONSTRUCTION
Constantin, C Fritz, T Perrone, P Shapiro, B Theory and Applications of Categories volume 39 issue 11 322-364 (01 Jan 2023)
Tue, 09 May 2023

16:00 - 17:00
L6

On the asymptotic analysis of the Calogero-Painlevé systems and the Tracy-Widom$_\beta$ distribution for $\beta$=6

Alexander Its
(IUPUI)
Abstract

The Calogero-Painlevé systems were introduced in 2001 by K. Takasaki as a natural generalization of the classical Painlevé equations to the case of the several Painlevé “particles” coupled via the Calogero type interactions. In 2014, I. Rumanov discovered a remarkable fact that a particular case of the Calogero– Painlevé II equation describes the Tracy-Widom distribution function for the general $\beta$-ensembles with the even values of parameter $\beta$. in 2017 work of M. Bertola, M. Cafasso , and V. Rubtsov, it was proven that all Calogero-Painlevé systems are Lax integrable, and hence their solutions admit a Riemann-Hilbert representation. This important observation has opened the door to rigorous asymptotic analysis of the Calogero-Painlevé equations which in turn yields the possibility of rigorous evaluation of the asymptotic behavior of the Tracy-Widom distributions for the values of $\beta$ beyond the classical $\beta =1, 2, 4$. In the talk these recent developments will be outlined with a special focus on the Calogero-Painlevé system corresponding to $\beta = 6$. This is a joint work with Andrei Prokhorov.

Mechanics reveals the role of peristome geometry in prey capture in carnivorous pitcher plants (Nepenthes)
Moulton, D (01 Jan 2023)
Thu, 15 Jun 2023
16:00
L5

Computations, heuristics and analytic number theory

Andrew Granville
(Université de Montréal)
Abstract

Abstract. I will talk about projects in which we combine heuristics with computational data to develop a theory in problems where it was previously hard to be confident of the guesses that there are in the literature.

 

1/ "Speculations about the number of primes in fast growing sequences". Starting from studying the distribution of primes in sequences like $2^n-3$, Jon Grantham and I have been developing a heuristic to guess at the frequency of prime values in arbitrary linear recurrence sequences in the integers, backed by calculations.

 

If there is enough time I will then talk about:

 

2/ "The spectrum of the $k$th roots of unity for $k>2$, and beyond".  There are many questions in analytic number theory which revolve around the "spectrum", the possible mean values of multiplicative functions supported on the $k$th roots of unity. Twenty years ago Soundararajan and I determined the spectrum when $k=2$, and gave some weak partial results for $k>2$, the various complex spectra.  Kevin Church and I have been tweaking MATLAB's package on differential delay equations to help us to develop a heuristic theory of these spectra for $k>2$, allowing us to (reasonably?) guess at the answers to some of the central questions.

Thu, 08 Jun 2023
16:00
L5

The elliptic Gamma function and Stark units for complex cubic fields

Luis Garcia
(University College London)
Abstract

The elliptic Gamma function — a generalization of the q-Gamma function, which is itself the q-analog of the ordinary Gamma function — is a meromorphic special function in several variables that mathematical physicists have shown to satisfy modular functional equations under SL(3,Z). In this talk I will present evidence (numerical and theoretical) that this function often takes algebraic values that satisfy explicit reciprocity laws and that are related to derivatives of Hecke L-functions at s=0. Thus this function conjecturally allows to extend the theory of complex multiplication to complex cubic fields as envisioned by Hilbert's 12th problem. This is joint work with Nicolas Bergeron and Pierre Charollois.

Thu, 01 Jun 2023
16:00
L5

An Euler system for the symmetric square of a modular form

Christopher Skinner
(Princeton University)
Abstract

I will explain a new construction of an Euler system for the symmetric square of an eigenform and its connection with L-values. The construction makes use of some simple Eisenstein cohomology classes for Sp(4) or, equivalently, SO(3,2). This is an example of a larger class of similarly constructed Euler systems.  This is a report on joint work with Marco Sangiovanni Vincentelli.

Subscribe to