Fri, 03 Mar 2023

16:00 - 17:00
Lecture Room 6

Topological Optimization with Big Steps

Dmitry Morozov
Abstract

Using persistent homology to guide optimization has emerged as a novel application of topological data analysis. Existing methods treat persistence calculation as a black box and backpropagate gradients only onto the simplices involved in particular pairs. We show how the cycles and chains used in the persistence calculation can be used to prescribe gradients to larger subsets of the domain. In particular, we show that in a special case, which serves as a building block for general losses, the problem can be solved exactly in linear time. We present empirical experiments that show the practical benefits of our algorithm: the number of steps required for the optimization is reduced by an order of magnitude. (Joint work with Arnur Nigmetov.)

Fri, 24 Feb 2023

15:00 - 16:00
Lecture Room 4

Analysing the shape of 3-periodic scalar fields for diffusion modelling

Senja Barthel
Abstract

Simulating diffusion computationally allows to predict the diffusivity of materials, understand diffusion mechanisms, and to tailor-make materials such as solid-state electrolytes with desired properties aiming at developing new batteries. By studying the geometry and topology of 3-periodic scalar fields (e.g. the potential of ions in the electrolyte), we develop a cost-efficient multi-scale model for diffusion in crystalline materials. This project is a typical example of a collaboration in the overlap of topology and materials science that started as a persistent homology project and turned into something else.

Fri, 17 Feb 2023

15:00 - 16:00
Lecture Room 4

Mobius Inversions and Persistent Homology

Amit Patel
Abstract

There are several ways of defining the persistence diagram, but the definition using the Möbius inversion formula (for posets) offers the greatest amount of flexibility. There are now many variations of the so called Generalized Persistence Diagrams by many people.  In this talk, I will focus on the approach I am developing. I will cover the state-of-the-art and where I see this work going.

Thu, 16 Feb 2023
17:00
L3

Semi-retractions, pre-adjunctions, and examples

Dana Bartošová
(University of Florida)
Abstract

We will define a notion of a semi-retraction between two first-order structures introduced by Scow. We show how a semi-retraction encodes Ramsey problems of finitely-generated substructes of one structure into the other under the most general conditions. We will compare semi-retractions to a category-theoretic notion of pre-adjunction recently popularized by Masulovic. We will accompany the results with examples and questions. This is a joint work with Lynn Scow.

Kylie and Chloe from the video

The second series of our short films, Me and My Maths, is now up and running on our social media channels and you can watch a compilation of the first four films via the video below. Me and My Maths: short films about people who also do maths.

Starring in order of appearance: Kylie and Chloe, Andrea, Doyne, and Kate Wenqi.

 

 

Tue, 07 Mar 2023

15:30 - 16:30
Virtual

Correlated stochastic block models: graph matching and community recovery

Miklos Racz
(Northwestern University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss statistical inference problems on edge-correlated stochastic block models. We determine the information-theoretic threshold for exact recovery of the latent vertex correspondence between two correlated block models, a task known as graph matching. As an application, we show how one can exactly recover the latent communities using multiple correlated graphs in parameter regimes where it is information-theoretically impossible to do so using just a single graph. Furthermore, we obtain the precise threshold for exact community recovery using multiple correlated graphs, which captures the interplay between the community recovery and graph matching tasks. This is based on joint work with Julia Gaudio and Anirudh Sridhar.

Tue, 28 Feb 2023

14:00 - 15:00
L4

Some combinatorial applications of guided random processes

Peter Keevash
(Oxford University)
Abstract

Random greedy algorithms became ubiquitous in Combinatorics after Rödl's nibble (semi-random method), which was repeatedly refined for various applications, such as iterative graph colouring algorithms (Molloy-Reed) and lower bounds for the Ramsey number $R(3,t)$ via the triangle-free process (Bohman-Keevash / Fiz Pontiveros-Griffiths-Morris). More recently, when combined with absorption, they have played a key role in many existence and approximate counting results for combinatorial structures, following a paradigm established by my proofs of the Existence of Designs and Wilson's Conjecture on the number of Steiner Triple Systems. Here absorption (converting approximate solutions to exact solutions) is generally the most challenging task, which has spurred the development of many new ideas, including my Randomised Algebraic Construction method, the Kühn-Osthus Iterative Absorption method and Montgomery's Addition Structures (for attacking the Ryser-Brualdi-Stein Conjecture). The design and analysis of a suitable guiding mechanism for the random process can also come with major challenges, such as in the recent proof of Erdős' Conjecture on Steiner Triple Systems of high girth (Kwan-Sah-Sawhney-Simkin). This talk will survey some of this background and also mention some recent results on the Queens Problem (Bowtell-Keevash / Luria-Simkin / Simkin) and the Existence of Subspace Designs (Keevash-Sah-Sawhney). I may also mention recent solutions of the Talagrand / Kahn-Kalai Threshold Conjectures (Frankston-Kahn-Narayanan-Park / Park-Pham) and thresholds for Steiner Triple Systems / Latin Squares (Keevash / Jain-Pham), where the key to my proof is constructing a suitable spread measure via a guided random process.

Tue, 28 Mar 2023

14:00 - 15:00
C4

Mixed Hodge modules and real groups

Dougal Davis
(University of Melbourne)
Abstract

I will explain an ongoing program, joint with Kari Vilonen, that aims to study unitary representations of real reductive Lie groups using mixed Hodge modules on flag varieties. The program revolves around a conjecture of Schmid and Vilonen that natural filtrations coming from the geometry of flag varieties control the signatures of Hermitian forms on real group representations. This conjecture is expected to facilitate new progress on the decades-old problem of determining the set of unitary irreducible representations by placing it in a more conceptual context. Our results to date centre around the interaction of Hodge theory with the unitarity algorithm of Adams, van Leeuwen, Trapa, and Vogan, which calculates the signature of a canonical Hermitian form on an arbitrary representation by reducing to the case of tempered representations using deformations and wall crossing. Our results include a Hodge-theoretic proof of the ALTV wall crossing formula as a consequence of a more refined result and a verification of the Schmid-Vilonen conjecture for tempered representations.

Tue, 30 May 2023
15:30
C4

Multivalued Dir-Minimizing Functions

Dr Immanuel Ben Porat
((Oxford University))
Further Information

The course will serve as an introduction to the theory of multivalued Dir-minimizing functions, which can be viewed as harmonic functions which attain multiple values at each point.

Aimed at Postgraduate students interested in geometric measure theory and its link with elliptic PDEs, a solid knowledge of functional analysis and Sobolev spaces, acquaintance with variational
methods in PDEs and some basic geometric measure theory are recommended.

Sessions led by Dr Immanuel Ben Porat will take place on

09 May 2023 15:30 - 17:30 C4

16 May 2023 15:30 - 17:30 C4

23 May 2023 15:30 - 17:30 C4

30 May 2023 15:30 - 17:30 C4

Should you be interested in taking part in the course, please send an email to @email.

Abstract

COURSE_PROPOSAL (12)_2.pdf

The space of unordered tuples. The notion of differentiability and the theory of metric Sobolev in the context of multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing currents and their link with Dir-minimizers. 

Subscribe to