CMS data and workflow management system
Fanfani, A
Bonacorsi, B
Ibacchi, W
Codispoti, G
De Filippis, N
Pompili, A
My, S
Abbrescia, M
Maggi, G
Donvito, G
Silvestris, L
Calzolari, F
Sarkar, S
Spiga, D
Cinquili, M
Lacaprara, S
Biasotto, M
Farina, F
Merlo, M
Belforte, S
Kavka, C
Sala, L
Harvey, J
Hufnagel, D
Fanzago, F
Corvo, M
Magini, N
Rehn, J
Toteva, Z
Feichtinger, D
Tuura, L
Eulisse, G
Bockelman, B
Lundstedt, C
Egeland, R
Evans, D
Mason, D
Gutsche, O
Sexton-Kennedy, L
Dagenhart, D
Afaq, A
Guo, Y
Kosyakov, S
Lueking, L
Sekhri, V
Fisk, I
McBride, P
Bauerdick, L
Bakken, J
Rossman, P
Wicklund, E
Wu, Y
Jones, C
Kuznetsov, V
Riley, D
Dolgert, A
Van Lingen, F
Narsky, I
Paus, C
Klute, M
Gomez-Ceballos, G
Piedra-Gomez, J
Miller, M
Mohapatra, A
Lazaridis, C
Bradley, D
Elmer, P
Wildish, T
Wuerthwein, F
Letts, J
Bourilkov, D
Kim, B
Smith, P
Hernandez, J
Caballero, J
Delgado, A
Flix, J
Cabrillo-Bartolome, I
Kasemann, M
Flossdorf, A
Stadie, H
Kreuzer, P
Khomitch, A
Hof, C
Zeidler, C
Kalini, S
Trunov, A
Saout, C
Felzmann, U
Metson, S
Newbold, D
Geddes, N
Brew, C
Jackson, J
Wakefield, S
De Weirdt, S
Adler, V
Maes, J
Van Mulders, P
Villella, I
Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications - Proceedings of the 10th Conference
441-445
(01 Jan 2008)
Tue, 07 Mar 2023
12:00 -
13:00
L6
"On (non-)Brownian filtrations and harmonic measure" and "Neural Controlled Differential Equations: The Log-ODE Method"
Dmitry Belyaev and Benjamin Walker
Tue, 21 Feb 2023
12:00 -
13:00
L6
“Scaling limits of Deep Residual Networks” and "Non-equilibrium fluctuations and SPDE with conservative noise"
Alain Rossier and Benjamin Fehrman
Hierarchical Quantification of Synergy in Channels
Perrone, P
Ay, N
Frontiers in Robotics and AI
volume 2
35
(08 Jan 2016)
Bimonoidal Structure of Probability Monads
Fritz, T
Perrone, P
Electronic Notes in Theoretical Computer Science
volume 341
121-149
(Dec 2018)
Stochastic order on metric spaces and the ordered Kantorovich monad
Fritz, T
Perrone, P
Advances in Mathematics
volume 366
107081
(Jun 2020)
Monads, Partial Evaluations, and Rewriting
Fritz, T
Perrone, P
Electronic Notes in Theoretical Computer Science
volume 352
129-148
(Oct 2020)
Partition functions and fibering operators on the Coulomb branch of 5d SCFTs
Closset, C
Magureanu, H
Journal of High Energy Physics
volume 2023
issue 1
35
(10 Jan 2023)
Thu, 11 May 2023
14:00 -
15:00
Lecture Room 3
A coordinate descent algorithm on the Stiefel manifold for deep neural network training
Estelle Massart
(UC Louvain)
Abstract
We propose to use stochastic Riemannian coordinate descent on the Stiefel manifold for deep neural network training. The algorithm rotates successively two columns of the matrix, an operation that can be efficiently implemented as a multiplication by a Givens matrix. In the case when the coordinate is selected uniformly at random at each iteration, we prove the convergence of the proposed algorithm under standard assumptions on the loss function, stepsize and minibatch noise. Experiments on benchmark deep neural network training problems are presented to demonstrate the effectiveness of the proposed algorithm.