Tue, 12 Oct 2021

15:30 - 16:30
L6

Exact correlations in topological quantum chains

Nick Jones
(University of Oxford)
Abstract

Free fermion chains are particularly simple exactly solvable models. Despite this, typically one can find closed expressions for physically important correlators only in certain asymptotic limits. For a particular class of chains, I will show that we can apply Day's formula and Gorodetsky's formula for Toeplitz determinants with rational generating function. This leads to simple closed expressions for determinantal order parameters and the characteristic polynomial of the correlation matrix. The latter result allows us to prove that the ground state of the chain has an exact matrix-product state representation.

Thu, 28 Oct 2021
14:00
Virtual

Randomized FEAST Algorithm for Generalized Hermitian Eigenvalue Problems with Probabilistic Error Analysis

Agnieszka Międlar
(University of Kansas)
Further Information

This talk is hosted by the Computational Mathematics Group of the Rutherford Appleton Laboratory.

Abstract

Randomized NLA methods have recently gained popularity because of their easy implementation, computational efficiency, and numerical robustness. We propose a randomized version of a well-established FEAST eigenvalue algorithm that enables computing the eigenvalues of the Hermitian matrix pencil $(\textbf{A},\textbf{B})$ located in the given real interval $\mathcal{I} \subset [\lambda_{min}, \lambda_{max}]$. In this talk, we will present deterministic as well as probabilistic error analysis of the accuracy of approximate eigenpair and subspaces obtained using the randomized FEAST algorithm. First, we derive bounds for the canonical angles between the exact and the approximate eigenspaces corresponding to the eigenvalues contained in the interval $\mathcal{I}$. Then, we present bounds for the accuracy of the eigenvalues and the corresponding eigenvectors. This part of the analysis is independent of the particular distribution of an initial subspace, therefore we denote it as deterministic. In the case of the starting guess being a Gaussian random matrix, we provide more informative, probabilistic error bounds. Finally, we will illustrate numerically the effectiveness of all the proposed error bounds.

 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Mon, 08 Nov 2021

16:00 - 17:00
L3

TModel-free portfolio theory: a rough path approach

DAVID PROEMEL
(Mannheim University)
Abstract

Classical approaches to optimal portfolio selection problems are based 
on probabilistic models for the asset returns or prices. However, by 
now it is well observed that the performance of optimal portfolios are 
highly sensitive to model misspecifications. To account for various 
type of model risk, robust and model-free approaches have gained more 
and more importance in portfolio theory. Based on a rough path 
foundation, we develop a model-free approach to stochastic portfolio 
theory and Cover's universal portfolio. The use of rough path theory 
allows treating significantly more general portfolios in a model-free 
setting, compared to previous model-free approaches. Without the 
assumption of any underlying probabilistic model, we present pathwise 
Master formulae analogously to the classical ones in stochastic 
portfolio theory, describing the growth of wealth processes generated 
by pathwise portfolios relative to the wealth process of the market 
portfolio, and we show that the appropriately scaled asymptotic growth 
rate of Cover's universal portfolio is equal to the one of the best 
retrospectively chosen portfolio. The talk is based on joint work with 
Andrew Allan, Christa Cuchiero and Chong Liu.

 

Mon, 01 Nov 2021

16:00 - 17:00
L3

: Locality for singular stochastic PDEs

YVAIN BRUNED
(Edinburgh University)
Abstract

 In this talk, we will present the tools of regularity structures to deal with singular stochastic PDEs that involve non-translation invariant differential operators. We describe in particular the renormalized equation for a very large class of spacetime dependent renormalization schemes. Our approach bypasses the previous approaches in the translation-invariant setting. This is joint work with Ismael Bailleul.

 

Mon, 25 Oct 2021

16:00 - 17:00
L3

Brownian Windings

ISAO SAUZEDDE
(University of Oxford)
Abstract

Given a point and a loop in the plane, one can define a relative integer which counts how many times the curve winds around the point. We will discuss how this winding function, defined for almost every points in the plane, allows to define some integrals along the loop. Then, we will investigate some properties of it when the loop is Brownian.
In particular, we will explain how to recover data such as the Lévy area of the curve and its occupation measure, based on the values of the winding of uniformly distributed points on the plane.

 

Mon, 18 Oct 2021

16:00 - 17:00
L3

On the diffusive-mean field limit for weakly interacting diffusions exhibiting phase transitions

GREG PAVLIOTIS
(Imperial College)
Abstract

I will present recent results on the statistical behaviour of a large number of weakly interacting diffusion processes evolving under the influence of a periodic interaction potential. We study the combined mean field and diffusive (homogenisation) limits. In particular, we show that these two limits do not commute if the mean field system constrained on the torus undergoes a phase transition, i.e., if it admits more than one steady state. A typical example of such a system on the torus is given by mean field plane rotator (XY, Heisenberg, O(2)) model. As a by-product of our main results, we also analyse the energetic consequences of the central limit theorem for fluctuations around the mean field limit and derive optimal rates of convergence in relative entropy of the Gibbs measure to the (unique) limit of the mean field energy below the critical temperature. This is joint work with Matias Delgadino (U Texas Austin) and Rishabh Gvalani (MPI Leipzig).

 

 

Wed, 19 Jan 2022

16:00 - 17:00
C2

Local-to-Global rigidity of quasi-buildings

Amandine Escalier
(University of Münster)
Abstract

We say that a graph G is Local-to-Global rigid if there exists R>0 such that every other graph whose balls of radius R are isometric to the balls of radius R in G is covered by G. Examples include the Euclidean building of PSLn(Qp). We show that the rigidity of the building goes further by proving that a reconstruction is possible from only a partial local information, called “print”. We use this to prove the rigidity of graphs quasi-isometric to the building among which are the torsion-free lattices of PSLn(Qp).

Wed, 10 Nov 2021

16:00 - 17:00
C5

Orbifolds - more than just spaces

Christoph Weis
(University of Oxford)
Abstract

Orbifolds are a generalisation of manifolds which allow group actions to enter the picture. The most basic examples of orbifolds are quotients of manifolds by (non-free) finite group actions.
I will give an introduction to orbifolds, recalling a number of philosophically different but mathematically equivalent definitions. For starters, I will try to convince you that "a space locally modelled on a quotient of R^n by a finite group" is misleading. I will draw many pictures of orbifolds, make the connection to complexes of groups, and explain the definition of a map of orbifolds. In the process, I hope to demystify the definition of the orbifold fundamental group, the orbifold Euler characteristic and orbifold cohomology.

Wed, 03 Nov 2021

16:00 - 17:00
C5

Grothendieck-Teichmuller Theory: Mapping Class Groups and Galois Groups

Luciana Basualdo Bonatto
(University of Oxford)
Abstract

In this talk, I will discuss the important Grothendieck conjecture which originated Grothendieck-Teichmuller Theory, a bridge between Topology and Number Theory. On the geometric side, there is the study of automorphisms of mapping class groups that satisfy compatibility conditions with respect to subsurface inclusions. On the other side, there is the study of the absolute Galois group of the rationals, one of the most important objects in Number Theory today.
In my talk, I will introduce these objects and discuss the recent progress that has been made in understanding such automorphisms of mapping class groups. No background in Number Theory or Galois Theory is required.

Wed, 27 Oct 2021

16:00 - 17:00
C5

Finiteness properties of groups

Sam Fisher
(University of Oxford)
Abstract

Finiteness properties of groups provide various generalisations of the properties "finitely generated" and "finitely presented." We will define different types of finiteness properties and discuss Bestvina-Brady groups as they provide examples of groups with interesting combinations of finiteness properties.

Subscribe to