Fri, 10 Feb 2023

14:00 - 15:00
L4

Making ice sheet models scale properly

Ed Bueler
(University of Alaska Fairbanks)
Abstract

My talk will attempt to capture the imperfect state of the art in high-resolution ice sheet modelling, aiming to expose the core performance-limiting issues.  The essential equations for modeling ice flow in a changing climate will be presented, assuming no prior knowledge of the problem.  These geophysical/climate problems are of both free-boundary and algebraic-equation-constrained character.  Current-technology models usually solve non-linear Stokes equations, or approximations thereof, at every explicit time-step.  Scale analysis shows why this current design paradigm is expensive, but building significantly faster high-resolution ice sheet models requires new techniques.  I'll survey some recently-arrived tools, some near-term improvements, and sketch some new ideas.

The metric measure boundary of spaces with Ricci curvature bounded below
Brué, E Mondino, A Semola, D Geometric and Functional Analysis volume 33 issue 3 593-636 (20 Apr 2023)
The metric measure boundary of spaces with Ricci curvature bounded below
Mondino, A Brué, E Semola, D Geometric and Functional Analysis
A simulation tool for physics-informed control of biomimetic soft robotic arms
Moulton, D IEEE Robotics and Automation Letters volume 8 issue 2 936-943 (06 Jan 2023)
A Teichmüller space for negatively curved surfaces
Hitchin, N Proceedings of the London Mathematical Society volume 126 issue 3 837-1062 (27 Dec 2022)
Tue, 07 Mar 2023
15:00
L3

Actions of higher rank groups on uniformly convex Banach spaces

Tim de Laat
Abstract

I will explain that all affine isometric actions of higher rank simple Lie groups and their lattices on arbitrary uniformly convex Banach spaces have a fixed point. This vastly generalises a recent breakthrough of Oppenheim. Combined with earlier work of Lafforgue and of Liao on strong Banach property (T) for non-Archimedean higher rank simple groups, this confirms a long-standing conjecture of Bader, Furman, Gelander and Monod. As a consequence, we deduce that box space expanders constructed from higher rank lattices are superexpanders. This is joint work with Mikael de la Salle.

Tue, 28 Feb 2023
15:00
L3

Computing bounded cohomology of discrete groups

Francesco Fournier-Facio
Abstract

Bounded cohomology is a functional-analytic analogue of ordinary cohomology that has become a fundamental tool in many fields, from rigidity theory to the geometry of manifolds. However it is infamously hard of compute, and the lack of very basic examples makes the overall picture still hard to grasp. I will report on recent progress in this direction, and draw attention to some natural questions that remain open.

Tue, 21 Feb 2023
15:00
L3

Milnor and non-Milnor representations

Ilia Smilga
Abstract

In 1977, Milnor formulated the following conjecture: every discrete group of affine transformations acting properly on the affine space is virtually solvable. We now know that this statement is false; the current goal is to gain a better understanding of the counterexamples to this conjecture. Every group that violates this conjecture "lives" in a certain algebraic affine group, which can be specified by giving a linear group and a representation thereof. Representations that give rise to counterexamples are said to be non-Milnor. We will talk about the progress made so far towards classification of these non-Milnor representations.

Tue, 14 Feb 2023
15:00
L3

Higher property T of arithmetic lattices

Roman Sauer
Abstract

The talk is based on joint work with Uri Bader. We prove that arithmetic lattices in a semisimple Lie group G satisfy a higher-degree version of property T below the rank of G. The proof relies on functional analysis and the polynomiality of higher Dehn functions of arithmetic lattices below the rank and avoids any automorphic machinery. If time permits, we describe applications to the cohomology and stability of arithmetic groups (the latter being joint work with Alex Lubotzky and Shmuel Weinberger).

Subscribe to