Noise-driven bifurcations in a neural field system modelling networks of grid cells
Carrillo, J Holden, H Solem, S Journal of Mathematical Biology volume 85 issue 4 (27 Oct 2022)
Thu, 27 Oct 2022

13:00 - 14:00
N3.12

Mathematrix: Support in the Maths Institute

Abstract

We will be joined by Charlotte Turner-Smith to discuss issues surrounding harassment and mental health, and how the department is helping to tackle these.

Thu, 13 Oct 2022

13:00 - 14:00
S1.37

Mathematrix Meet and Greet

Abstract

Come along for free pizza and to hear about the Mathematrix events this term.

Thu, 10 Nov 2022
14:00
S1.37

Non-invertible Symmetries in 5d Chern-Simons theories

Eduardo Garcia-Valdecasas
(Harvard)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is also possible to join online via Zoom.

Abstract

Electric 1-form symmetries are generically broken in gauge theories with Chern-Simons terms. In this talk we discuss how infinite subsets of these symmetries become non-invertible topological defects. Time permitting we will also discuss generalizations and applications to the Swampland program in relation to the completeness hypothesis.

Thu, 02 Jun 2022

14:30 - 15:45
L4

Non-elementary categoricity and projective o-minimal classes

Boris Zilber
((Oxford University))
Abstract

Given a cover U of a family of smooth complex algebraic varieties, we associate with it a class C of structures locally definable in an o-minimal expansion of the reals, containing the cover U.  We prove that the class is ℵ0-homogeneous over submodels and stable. It follows that C is categorical in cardinality ℵ1. In the one-dimensional case we prove that a slight modification of C is an abstract elementary class categorical in all uncountable cardinals.
 

Mon, 28 Nov 2022

13:00 - 14:00
L1

Integrability of the Liouville theory

Antti Kupiainen
(University of Helsinki)
Further Information

This is in joint with the String Theory seminar. Note the unusual date and time.

Abstract

Conformal Field Theories (CFT) are believed to be exactly solvable once their primary scaling fields and their 3-point functions are known. This input is called the spectrum and structure constants of the CFT respectively. I will review recent work where this conformal bootstrap program can be rigorously carried out for the case of Liouville CFT, a theory that plays a fundamental role in 2d random surface theory and many other fields in physics and mathematics. Liouville CFT has a probabilistic formulation on an arbitrary Riemann surface and the bootstrap formula can be seen as a "quantization" of the plumbing construction of surfaces with marked points axiomatically discussed earlier by Graeme Segal. Joint work with Colin Guillarmou, Remi Rhodes and Vincent Vargas

Subscribe to