Tue, 17 May 2022

14:00 - 15:00
L6

Splitting fields of real irreducible representations of finite groups

Dmitrii Pasechnik
(Oxford)
Abstract

We show that any irreducible representation $\rho$ of a finite group $G$ of exponent $n$, realisable over $\mathbb R$, is realisable over the field $E$ of real cyclotomic numbers of order $n$, and describe an algorithmic procedure transforming a realisation of $\rho$ over $\mathbb Q(\zeta_n)$ to one over $E$.

Thu, 02 Jun 2022
12:00
L5

Towards multi-dimensional localisation

Krzysztof Ciosmak
(University of Oxford)
Abstract

Localisation is a powerful tool in proving and analysing various geometric inequalities, including isoperimertic inequality in the context of metric measure spaces. Its multi-dimensional generalisation is linked to optimal transport of vector measures and vector-valued Lipschitz maps. I shall present recent developments in this area: a partial affirmative answer to a conjecture of Klartag concerning partitions associated to Lipschitz maps on Euclidean space, and a negative answer to another conjecture of his concerning mass-balance condition for absolutely continuous vector measures. During the course of the talk I shall also discuss an intriguing notion of ghost subspaces related to the above mentioned partitions. 

Correlating tau pathology to brain atrophyusing a physics-based Bayesian model
Goriely, A Engineering with Computers volume 38 3867-3877 (07 Jun 2022)
Fri, 10 Jun 2022
15:00
L3

Directed networks through simplicial paths and Hochschild homology

Henri Riihimäki
(KTH Royal Institute of Technology)
Abstract

Directed graphs are a model for various phenomena in the
sciences. In topological data analysis particularly the advent of
applying topological tools to networks of brain neurons has spawned
interest in constructing topological spaces out of digraphs, developing
computational tools for obtaining topological information, and using
these to understand networks. At the end of the day, (homological)
computations of the spaces reveal something about the geometric
realisation, thereby losing the directionality information.

However, digraphs can also be associated with path algebras. We can now
consider applying Hochschild homology to extract information, hopefully
obtaining something more refined in terms of the combinatorics of the
directed edges and paths in the digraph. Unfortunately, Hochschild
homology tends to vanish beyond degree 1. We can overcome this by
considering different higher paths of simplices, and thus introduce
Hochschild homology of digraphs in higher degrees. Moreover, this
procedure gives an implementable persistence pipeline for network
analysis. This is a joint work with Luigi Caputi.

Fri, 03 Jun 2022
15:00
L3

Projected barcodes : a new class of invariants and distances for multi-parameter persistence modules

Nicolas Berkouk
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

In this talk, we will present a new class of invariants of multi-parameter persistence modules : \emph{projected barcodes}. Relying on Grothendieck's six operations for sheaves, projected barcodes are defined as derived pushforwards of persistence modules onto $\R$ (which can be seen as sheaves on a vector space in a precise sense). We will prove that the well-known fibered barcode is a particular instance of projected barcodes. Moreover, our construction is able to distinguish persistence modules that have the same fibered barcodes but are not isomorphic. We will present a systematic study of the stability of projected barcodes. Given F a subset of the 1-Lipschitz functions, this leads us to define a new class of well-behaved distances between persistence modules, the  F-Integral Sheaf Metrics (F-ISM), as the supremum over p in F of the bottleneck distance of the projected barcodes by p of two persistence modules. 

In the case where M is the collection in all degrees of the sublevel-sets persistence modules of a function f : X -> R^n, we prove that the projected barcode of M by a linear map p : R^n \to R is nothing but the collection of sublevel-sets barcodes of the post-composition of f by p. In particular, it can be computed using already existing softwares, without having to compute entirely M. We also provide an explicit formula for the gradient with respect to p of the bottleneck distance between projected barcodes, allowing to use a gradient ascent scheme of approximation for the linear ISM. This is joint work with François Petit.

 

Fri, 20 May 2022

15:00 - 16:00
L3

Approximating Persistent Homology for Large Datasets

Anthea Monod
(Imperial College London)
Abstract

Persistent homology is an important methodology from topological data analysis which adapts theory from algebraic topology to data settings and has been successfully implemented in many applications. It produces a statistical summary in the form of a persistence diagram, which captures the shape and size of the data. Despite its widespread use, persistent homology is simply impossible to implement when a dataset is very large. In this talk, I will address the problem of finding a representative persistence diagram for prohibitively large datasets. We adapt the classical statistical method of bootstrapping, namely, drawing and studying smaller multiple subsamples from the large dataset. We show that the mean of the persistence diagrams of subsamples—taken as a mean persistence measure computed from the subsamples—is a valid approximation of the true persistent homology of the larger dataset. We give the rate of convergence of the mean persistence diagram to the true persistence diagram in terms of the number of subsamples and size of each subsample. Given the complex algebraic and geometric nature of persistent homology, we adapt the convexity and stability properties in the space of persistence diagrams together with random set theory to achieve our theoretical results for the general setting of point cloud data. We demonstrate our approach on simulated and real data, including an application of shape clustering on complex large-scale point cloud data.

 

This is joint work with Yueqi Cao (Imperial College London).

Fri, 13 May 2022

15:00 - 16:00
L2

Non-Euclidean Data Analysis (and a lot of questions)

John Aston
(University of Cambridge)
Abstract

The statistical analysis of data which lies in a non-Euclidean space has become increasingly common over the last decade, starting from the point of view of shape analysis, but also being driven by a number of novel application areas. However, while there are a number of interesting avenues this analysis has taken, particularly around positive definite matrix data and data which lies in function spaces, it has increasingly raised more questions than answers. In this talk, I'll introduce some non-Euclidean data from applications in brain imaging and in linguistics, but spend considerable time asking questions, where I hope the interaction of statistics and topological data analysis (understood broadly) could potentially start to bring understanding into the applications themselves.

Fri, 06 May 2022

15:00 - 16:00
L4

Applied Topology TBC

Bernadette Stolz
(University of Oxford, Mathematical Institute)
Well-posedness and numerical schemes for one-dimensional McKean-Vlasov equations and interacting particle systems with discontinuous drift
Reisinger, C Stockinger, W BIT Numerical Mathematics volume 62 1505-1549 (18 May 2022)
Subscribe to