North Meets South
Abstract
This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.
This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.
This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.
This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.
In quantum many body physics, we look for universal features that allow us to classify complex quantum systems. This classification leads to phase diagrams of quantum systems. These are analogous to the familiar phase diagram of water at different temperatures and pressures, with ice and vapour constituting two phases. Quantum phase diagrams correspond to the different phases of matter at zero temperature, where the system is in its lowest energy state (usually called the ground state).
This session will take place live in L1 only and not online on Teams.
Are you interested in sharing your love of Maths with the next generation of mathematicians, but you don’t know where to start? In this session we will discuss some basic principles and top tips for creating a workshop for students aged 14–16, and get you started on developing your own. There will also be the opportunity to work on this further afterwards and potentially deliver your session as part of the Oxfordshire Maths Masterclasses (for local school students) in Hilary Term. Bring along your favourite bit of maths and a willingness to have a go.
(This is Part II of a two-part talk.)
Forcing axioms spell out the dictum that if a statement can be forced, then it is already true. The P_max axiom (*) goes beyond that by claiming that if a statement is consistent, then it is already true. Here, the statement in question needs to come from a resticted class of statements, and "consistent" needs to mean "consistent in a strong sense". It turns out that (*) is actually equivalent to a forcing axiom, and the proof is by showing that the (strong) consistency of certain theories gives rise to a corresponding notion of forcing producing a model of that theory. Our result builds upon earlier work of R. Jensen and (ultimately) Keisler's "consistency properties".
Forcing axioms spell out the dictum that if a statement can be forced, then it is already true. The P_max axiom (*) goes beyond that by claiming that if a statement is consistent, then it is already true. Here, the statement in question needs to come from a resticted class of statements, and "consistent" needs to mean "consistent in a strong sense". It turns out that (*) is actually equivalent to a forcing axiom, and the proof is by showing that the (strong) consistency of certain theories gives rise to a corresponding notion of forcing producing a model of that theory. Our result builds upon earlier work of R. Jensen and (ultimately) Keisler's "consistency properties".
(This is Part I of a two-part talk.)