
Andrea Medaglia
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
Control of Overpopulated Tails in Kinetic Epidemic Models
Mattia Zanella and Andrea Medaglia.
Preprint arXiv, 2025
https://arxiv.org/pdf/2501.05365
Uncertainty Quantification for the Homogeneous Landau-Fokker-Planck Equation via Deterministic Particle Galerkin methods
R. Bailo, J. A. Carrillo, A. M., and M. Zanella.
Multiscale Modeling and Simulation. In press.
https://arxiv.org/pdf/2312.07218v1
Particle simulation methods for the Landau-Fokker-Planck equation with uncertain data
A. M., L. Pareschi, and M. Zanella.
Journal of Computational Physics, 503 (2024), 112845.
https://doi.org/10.1016/j.jcp.2024.112845
On the optimal control of kinetic epidemic models with uncertain social features
J. Franceschi, A. M., and M. Zanella.
Optimal Control Applications and Methods, 1-29 (2023).
https://doi.org/10.1002/oca.3029
Stochastic Galerkin particle methods for kinetic equations of plasmas with uncertainties
A. M., L. Pareschi, and M. Zanella.
Journal of Computational Physics, 479 (2023), 112011.
https://doi.org/10.1016/j.jcp.2023.112011
Monte Carlo stochastic Galerkin methods for non-Maxwellian kinetic models of multiagent systems with uncertainties
A. M., A. Tosin and M. Zanella.
Partial Differential Equations and Applications, 3, 51 (2022).
https://doi.org/10.1007/s42985-022-00189-w
Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties
A. M., G. Colelli, L. Farina, A. Bacila, P. Bini, E. Marchioni, S. Figini, A. Pichiecchio, and M. Zanella.
International Journal of Non-Linear Mechanics, 141 (2022), 103933.
My research is devoted to the numerical analysis and simulation of kinetic equations and multiagent systems in presence of random parameters. In particular, I work on the Landau and the Boltzmann equations for plasma and rarefied gas dynamics with uncertainties. I am also interested in the mathematical modelling and control of agent-based models with applications in life sciences.
Tutor and TA for Numerical Solution of Partial Differential Equations (B6.1)