Skip to main content
University of Oxford logo Home

Search form

  • Log in
  • Members
  • About Us
    • Contact Us
    • Travel & Maps
    • Our Building
    • Supporting Mathematics
    • Alumni
    • History
    • Art and Oxford Mathematics
    • News
    • Vacancies
    • Equality, Diversity & Inclusion
  • Study Here
    • Undergraduate Study
    • Postgraduate Study
    • Current Students
  • Research
    • Research Groups
    • Case studies
    • Faculty Books
  • Outreach
    • Posters
    • Oxford Mathematics Alphabet
    • Oxford Online Maths Club
    • It All Adds Up
    • Problem Solving Matters
    • PROMYS Europe
    • Oxfordshire Maths Masterclasses
    • Maths Week England
    • Outreach Information
    • Mailing List
  • People
    • Key Contacts
    • University People Search
    • People list
    • A Global Department
    • Research Fellowship Programmes
    • Professional Services Teams
  • Events
    • Conference Facilities
    • Public Lectures & Events
    • Departmental Seminars & Events
    • Special Lectures
    • Conferences
    • Summer Schools
    • Past Events
    • Alumni newsletters
    • Info for event organisers and attendees

Primary tabs

  • View(active tab)
  • Contact
OxPDE's

Prof. Gregory Seregin

Status
Emeritus

Professor of Mathematics

Contact form
CV
+44 1865 615110
Research groups
  • Oxford Centre for Nonlinear PDE

Address
Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG

Recent books
Lecture notes on regularity theory for the Navier-Stokes equations Seregin, G (01 Jan 2014)
Recent publications
Time decay for solutions to the Stokes equations with drift
Schonbek, M Seregin, G COMMUNICATIONS IN CONTEMPORARY MATHEMATICS volume 20 issue 3 (May 2018) http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000425682700010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
On stability of weak Navier–Stokes solutions with large L<sup>3,∞</sup>initial data
Barker, T Seregin, G Šverák, V Communications in Partial Differential Equations 1-24 (01 May 2018)
A necessary condition of potential blowup for the Navier-Stokes system in half-space
Barker, T Seregin, G MATHEMATISCHE ANNALEN volume 369 issue 3-4 1327-1352 (Dec 2017) http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000413115900013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
Remark on Wolf’s condition for boundary regularity of the Navier–Stokes equations
Seregin, G Journal of Mathematical Sciences volume 224 issue 3 468-474 (05 Jun 2017)
On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L-3-initial data
Seregin, G Sverak, V NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS volume 154 269-296 (May 2017) http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000396972800016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
Teaching

HT11: Calculus of Variations, C5.2b

TCC course 2009-2011: Mathematical Hydrodynamics    http://people.maths.ox.ac.uk/seregin/

MT11,MT12,MT13: Methods of Functional Analysis for PDE's, C5.1a

MT14,MT15: Functional Analytic Methods for PDE's, C4.3

HT15,HT16,HT17: CDT-TCC course on parabolic PDE's

HT17: Hilbert Spaces, B4.2

 

 

Major / recent publications

 

 
MR1810507 (2001k:74043) Fuchs, Martin; Seregin, Gregory Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lecture Notes in Mathematics, 1749.Springer-Verlag, Berlin, 2000. vi+269 pp. ISBN: 3-540-41397-9 


MR2827878 Seregin, Gregory A. Weak solutions to the Navier-Stokes equations with bounded scale-invariant quantities. Proceedings of the International Congress of Mathematicians. Volume III, 2105–2127, Hindustan Book Agency, New Delhi, 2010, 35Q30 (35B65 35D30 76D05) PDF Clipboard Series Chapter

MR3289443 Seregin, Gregory Lecture notes on regularity theory for the Navier-Stokes equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. x+258 pp. ISBN: 978-981-4623-40-7 

 
 
Highlighted publications
A Certain Necessary Condition of Potential Blow up for Navier-Stokes Equations
Seregin, G Communications in Mathematical Physics volume 312 issue 3 833-845 (01 Jun 2012)
On divergence-free drifts
Seregin, G Silvestre, L Šverák, V Zlatoš, A Journal of Differential Equations volume 252 issue 1 505-540 (01 Jan 2012)
Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations
Constantin, P Seregin, G Discrete and Continuous Dynamical Systems. Series A volume 26 1185-1196 (2010)
Weak solutions to the Navier-Stokes equations with bounded scale-invariant quantities
Seregin, G Proceedings of the International Congress of Mathematicians. Volume III 2105-2127 (2010)
Liouville theorems for the Navier-Stokes equations and applications
Koch, G Nadirashvili, N Seregin, G Šverák, V Acta Mathematica volume 203 issue 1 83-105 (01 Sep 2009)
Research interests

Partial Differential Equations

Prizes, awards, and scholarships

Humboldt Research Award, 2002

Sophja Kovalevskaya Prize of the Russian  Academy of Sciences, 2003

Pathway Lecture Series in Mathematics, Keio University, Japan, February, 2006

Ordway Distinguished Lecture Series, University of Minnesota, USA, April, 2007, October, 2016

Invited talk, International Congress of Mathematicians, Hyderabad, India, 2010

P. L. Chebyshev Prize of St. Petersburg Govement, 2022

Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Instangram
Oxford Mathematics Youtube

© Mathematical Institute
Website Accessibility Statement
Website Privacy Policy & Cookies Statement

Good practice scheme
Athena SWAN silver award
Stonewall workplace equality
sfy39587stp18