
Prof. Melanie Rupflin
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
Melanie Rupflin: Low energy levels of harmonic maps into analytic manifolds, arxiv:2303.00389
Melanie Rupflin: Convergence of almost harmonic maps to geodesic bubble trees, arXiv:2210.13367
Melanie Rupflin: Lojasiewicz inequalities for almost harmonic maps near simple bubble trees, arXiv:2101.05527
Andrea Malchiodi, Melanie Rupflin, Ben Sharp: Łojasiewicz inequalities near simple bubble trees, to appear in American Journal of Mathematics, arxiv:2007.07017
James Kohout, Melanie Rupflin, Peter M. Topping: Uniqueness and nonuniqueness of limits of Teichmueller harmonic map flow, Adv. Calc. Var 15 (2022) arXiv:1909.06422
Melanie Rupflin: Hyperbolic metrics on surfaces with boundary, J. Geom. Anal. 31, 3117-3136, (2021) arXiv:1807.04464
Craig Robertson, Melanie Rupflin: Finite-time degeneration for variants of Teichmüller harmonic map flow, J. London Math. Society (2) 2020, arXiv:1807.06363
Melanie Rupflin, Peter M. Topping: Global weak solutions of the Teichmüller harmonic map flow into general targets,
Anal. PDE 12 (2019), arXiv:1709.01881
Nadine Große, Melanie Rupflin: Holomorphic quadratic differentials dual to Fenchel-Nielsen coordinates,
Ann. Global Anal. Geom. 55 (2019), arXiv:1806.04384
Melanie Rupflin, Matthew R. I. Schrecker: Analysis of boundary bubbles for almost minimal cylinders,
Calc. Var. Partial Differential Equations 57 (2018), arXiv:1707.07985
Nadine Grosse and Melanie Rupflin: Sharp eigenvalue estimates on degenerating surfaces,
Comm. Partial Differential Equations 44 (2019), 573-612, arXiv:1701.08491
Melanie Rupflin and Peter M. Topping: Horizontal curves of hyperbolic metrics,
Calc. Var. PDE 57 (2018), arXiv:1605.06691
Reto Müller and Melanie Rupflin: Smooth long-time existence of Harmonic-Ricci Flow on surfaces, J. Lond. Math. Soc. 95 (2017), arXiv:1510.03643
Tobias Huxol, Melanie Rupflin, Peter M. Topping: Refined asymptotics of the Teichmüller harmonic map flow into general targets,
Calc. Var. PDEs 55 (2016), arXiv:1502.05791
Melanie Rupflin, Teichmüller harmonic map flow from cylinders,
Mathematische Annalen, 368 (2017), 1227-1276, arXiv:1501.07552
Melanie Rupflin, Oliver C. Schnürer: Weak solutions to mean curvature flow respecting obstacles, to appear in Ann. Sc. Norm. Super. Pisa, arXiv:1409.7529
Melanie Rupflin and Peter M. Topping: Teichmüller harmonic map flow into nonpositively curved targets,
J. Differential Geom. 108 (2018), arXiv:1403.3195
Melanie Rupflin and Peter M. Topping: A uniform Poincaré estimate for quadratic differentials on closed surfaces, Calc. Var. PDE 53 (2015), MR3347472
Melanie Rupflin, Peter M. Topping and Miaomiao Zhu: Asymptotics of the Teichmüller harmonic map flow, Adv. Math. 244 (2013), MR3115138
Melanie Rupflin: Flowing maps to minimal surfaces: Existence and uniqueness of solutions Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 2, MR3181674
Melanie Rupflin and Peter M. Topping: Flowing to minimal surfaces, American Journal of Mathematics
138 (2016), arXiv:1205.6298
Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
My main field of interest is geometric analysis, in particular the study of geometric flows
and problems related to harmonic maps and minimal surfaces.