Skip to main content
University of Oxford logo Home

Search form

  • Log in
  • Members
  • About Us
    • Contact Us
    • Travel & Maps
    • Our Building
    • Supporting Mathematics
    • Alumni
    • History
    • Art and Oxford Mathematics
    • Equality, Diversity and Inclusion
    • News
    • Vacancies
  • Study Here
    • Undergraduate Study
    • Postgraduate Study
    • Current Students
  • Research
    • Research Groups
    • Case Studies
    • Faculty Books
  • Outreach
    • Posters
    • Oxford Mathematics Alphabet
    • Oxford Online Maths Club
    • Oxford Maths Festival
    • It All Adds Up
    • Problem Solving Matters
    • MIORPA
    • PROMYS Europe
    • Oxfordshire Maths Masterclasses
    • Outreach Information
    • Mailing List
  • People
    • Key Contacts
    • People List
    • A Global Department
    • Research Fellowship Programmes
    • Professional Services Teams
  • Events
    • Venue Hire
    • Public Lectures & Events
    • Departmental Seminars & Events
    • Special Lectures
    • Conferences
    • Summer Schools
    • Past Events
    • Info for Event Organisers & Attendees

Primary tabs

  • View
  • Contact
Picture

Prof. Melanie Rupflin

Status
Academic Faculty
+44 1865 615119
Contact form
ORCID iD
https://orcid.org/0000-0002-9139-1400
Research groups
  • Oxford Centre for Nonlinear PDE
Address
Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
Major / recent publications

Melanie Rupflin: Sharp quantitative rigidity results for maps from S^2 to S^2 of general degree, arXiv:2305.17045

Melanie Rupflin: Low energy levels of harmonic maps into analytic manifolds, arxiv:2303.00389

Melanie Rupflin: Convergence of almost harmonic maps to geodesic bubble trees, arXiv:2210.13367

Melanie Rupflin: Lojasiewicz inequalities for almost harmonic maps near simple bubble trees, arXiv:2101.05527

Andrea Malchiodi, Melanie Rupflin, Ben Sharp:  Łojasiewicz inequalities near simple bubble trees, to appear in American Journal of Mathematics, arxiv:2007.07017

James Kohout, Melanie Rupflin, Peter M. Topping: Uniqueness and nonuniqueness of limits of Teichmueller harmonic map flow, Adv. Calc. Var 15 (2022)  arXiv:1909.06422

Melanie Rupflin: Hyperbolic metrics on surfaces with boundary,  J. Geom. Anal. 31, 3117-3136,  (2021) arXiv:1807.04464

Craig Robertson, Melanie Rupflin: Finite-time degeneration for variants of Teichmüller harmonic map flow, J. London Math. Society (2) 2020, arXiv:1807.06363

Melanie Rupflin, Peter M. Topping: Global weak solutions of the Teichmüller harmonic map flow into general targets, 
Anal. PDE 12 (2019), arXiv:1709.01881

Nadine Große, Melanie Rupflin: Holomorphic quadratic differentials dual to Fenchel-Nielsen coordinates, 
Ann. Global Anal. Geom. 55 (2019), arXiv:1806.04384

Melanie Rupflin, Matthew R. I. Schrecker: Analysis of boundary bubbles for almost minimal cylinders, 
Calc. Var. Partial Differential Equations 57 (2018), arXiv:1707.07985

Nadine Grosse and Melanie Rupflin: Sharp eigenvalue estimates on degenerating surfaces, 
Comm. Partial Differential Equations 44 (2019), 573-612, arXiv:1701.08491

Melanie Rupflin and Peter M. Topping: Horizontal curves of hyperbolic metrics,
Calc. Var. PDE 57 (2018),  arXiv:1605.06691

Reto Müller and Melanie Rupflin:  Smooth long-time existence of Harmonic-Ricci Flow on surfaces, J. Lond. Math. Soc. 95 (2017), arXiv:1510.03643

Tobias Huxol, Melanie Rupflin, Peter M. Topping: Refined asymptotics of the Teichmüller harmonic map flow into general targets, 
Calc. Var. PDEs 55 (2016), arXiv:1502.05791

Melanie Rupflin, Teichmüller harmonic map flow from cylinders,
Mathematische Annalen, 368 (2017), 1227-1276, arXiv:1501.07552

Melanie Rupflin, Oliver C. Schnürer:  Weak solutions to mean curvature flow respecting obstacles, to appear in Ann. Sc. Norm. Super. Pisa,  arXiv:1409.7529

Melanie Rupflin and Peter M. Topping: Teichmüller harmonic map flow into nonpositively curved targets, 
J. Differential Geom. 108 (2018),  arXiv:1403.3195

Melanie Rupflin and Peter M. Topping: A uniform Poincaré estimate for quadratic differentials on closed surfaces, Calc. Var. PDE 53 (2015),  MR3347472

Melanie Rupflin, Peter M. Topping and Miaomiao Zhu: Asymptotics of the Teichmüller harmonic map flow, Adv. Math. 244 (2013), MR3115138

Melanie Rupflin: Flowing maps to minimal surfaces: Existence and uniqueness of solutions Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 2, MR3181674

Melanie Rupflin and Peter M. Topping: Flowing to minimal surfaces,  American Journal of Mathematics 
138 (2016), arXiv:1205.6298

 
Teaching

I am currently lecturing the part A course in Differential Equations and the Part B Course Functional Analysis 2. 

You can find some videos of the lectures also on the Youtube-channel of the Mathematics Department, such as a lecture on the Maximum Principle and lectures on weak convergence. 

 

Preferred address

Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG

Research interests

I work on the analysis of elliptic and parabolic non-linear PDEs and of geometric variational problems, in particular related to harmonic maps.

A major focus of my current research is to develop a new quantitative theory for variational problems that is robust enough to deal with phenomena such as formation of singularities or concentration of energy at different scales and that yields precise control on the dynamics of gradient flows. 

 

You can find a recent talk on gradient flows from the LMS summer school aimed at undergraduate student here. 

Facebook LinkedIn Bluesky X
TikTok Instagram YouTube
London Mathematical Society Good Practice Scheme Athena SWAN Silver Award (ECU Gender Charter) Stonewall Silver Employer 2022

© Mathematical Institute

Accessibility Statement


Privacy Policy

Cookies

sfy39587stp18