Thu, 03 Mar 2022

16:00 - 17:00
L4

Density of rational points on del Pezzo surfaces of degree 1

Rosa Winter
(King's College London)
Abstract

Let X be an algebraic variety over an infinite field k. In arithmetic geometry we are interested in the set X(k) of k-rational points on X. For example, is X(k) empty or not? And if it is not empty, is X(k) dense in X with respect to the Zariski topology?


Del Pezzo surfaces are surfaces classified by their degree d, which is an integer between 1 and 9 (for d >= 3, these are the smooth surfaces of degree d in P^d). For del Pezzo surfaces of degree at least 2 over a field k, we know that the set of k-rational points is Zariski dense provided that the surface has one k-rational point to start with (that lies outside a specific subset of the surface for degree 2). However, for del Pezzo surfaces of degree 1 over a field k, even though we know that they always contain at least one k-rational point, we do not know if the set of k-rational points is Zariski dense in general.


I will talk about density of rational points on del Pezzo surfaces, state what is known so far, and show a result that is joint work with Julie Desjardins, in which we give sufficient and necessary conditions for the set of k-rational points on a specific family of del Pezzo surfaces of degree 1 to be Zariski dense, where k is finitely generated over Q.

Thu, 10 Jun 2021

16:00 - 17:00
Virtual

Refining Data-Driven Market Simulators and Managing their Risks

Blanka Horvath
(King's College London)
Further Information
Abstract

Techniques that address sequential data have been a central theme in machine learning research in the past years. More recently, such considerations have entered the field of finance-related ML applications in several areas where we face inherently path dependent problems: from (deep) pricing and hedging (of path-dependent options) to generative modelling of synthetic market data, which we refer to as market generation.

We revisit Deep Hedging from the perspective of the role of the data streams used for training and highlight how this perspective motivates the use of highly-accurate generative models for synthetic data generation. From this, we draw conclusions regarding the implications for risk management and model governance of these applications, in contrast to risk management in classical quantitative finance approaches.

Indeed, financial ML applications and their risk management heavily rely on a solid means of measuring and efficiently computing (similarity-)metrics between datasets consisting of sample paths of stochastic processes. Stochastic processes are at their core random variables with values on path space. However, while the distance between two (finite dimensional) distributions was historically well understood, the extension of this notion to the level of stochastic processes remained a challenge until recently. We discuss the effect of different choices of such metrics while revisiting some topics that are central to ML-augmented quantitative finance applications (such as the synthetic generation and the evaluation of similarity of data streams) from a regulatory (and model governance) perspective. Finally, we discuss the effect of considering refined metrics which respect and preserve the information structure (the filtration) of the market and the implications and relevance of such metrics on financial results.

Fri, 05 Mar 2021

14:00 - 15:00
Virtual

Graduated orders and their lattices

Miriam Norris
(King's College London)
Abstract

For $G$ a finite group, $p$ a prime and $(K, \mathcal{O}_K, k)$ a $p$-modular system the group ring $\mathcal{O}_K G$ is an $\mathcal{O}_k$-order in the $K$-algebra $KG.$ Graduated $\mathcal{O}_K$-orders are a particularly nice class of $\mathcal{O}_K$-orders first introduced by Zassenhaus. In this talk will see that an $\mathcal{O}_K$-order $\Lambda$ in a split $K$-algebra $A$ is graduated if the decomposition numbers for the regular $A$-module are no greater than $1$. Furthermore will see that graduated orders can be described (not uniquely) by a tuple $n$ and a matrix $M$ called the exponant matrix. Finding a suitable $n$ and $M$ for a graduated order $\Lambda$ in the $K$-algebra $A$ provides a parameterisation of the $\Lambda$-lattices inside the regular $A$-module. Understanding the $\mathcal{O}_K G$-lattices inside representations of certain groups $G$ is of interest to those involved in the Langlands programme as well as of independent interest to algebraists.

Mon, 01 Feb 2021
12:15
Virtual

5D non-Lorentzian CFT’s and 6D Physics

Neil Lambert
(King's College London)
Abstract

NOTE: unusual time! 

 

We discuss a class of 5-dimensional supersymmetric non-Lorentzian Lagrangians with an SU(1,3) conformal symmetry. These theories arise from reduction of 6-dimensional CFT's on a comformally compactified spacetime. We use the SU(1,3) Ward identities to find the form of the correlation functions which have a rich structure. Furthermore we show how these can be used to reconstruct  6-dimensional  CFT correlators. 
 

Tue, 18 Feb 2020

12:00 - 13:00
C1

Can we have null models of real networks? Maximum Entropy Random Loopy Graphs

Fabián Aguirre-López
(King's College London)
Abstract

Real networks are highly clustered (large number of short cycles) in contrast with their random counterparts. The Erdős–Rényi model and the Configuration model will generate networks with a tree like structure, a feature rarely observed in real networks. This means that traditional random networks are a poor choice as null models for real networks. Can we do better than that? Maximum entropy random graph ensembles are the natural choice to generate such networks. By introducing a bias with respect to the number of short cycles in a degree constrained graph, we aim to get a random graph model with a tuneable number of short cycles [1,2]. Nevertheless, the story is not so simple. In the same way random unclustered graphs present undesired topology, highly clustered ones will do as well if one is not careful with the scaling of the control parameters relative to the system size. Additionally the techniques to generate and sample numerically from general biased degree constrained graph ensembles will also be discussed. The topological transition has an important impact on the computational cost to sample graphs from these ensembles. To take it one step further, a general approach using the eigenvalues of the adjacency matrix rather than just the number of short cycles will also be presented, [2].

[1] López, Fabián Aguirre, et al. "Exactly solvable random graph ensemble with extensively many short cycles." Journal of Physics A: Mathematical and Theoretical 51.8 (2018): 085101.
[2] López, Fabián Aguirre, and Anthony CC Coolen. "Imaginary replica analysis of loopy regular random graphs." Journal of Physics A: Mathematical and Theoretical 53.6 (2020): 065002.

Mon, 10 Feb 2020
12:45
L3

Comments on de Sitter horizons & Sphere Partition Functions

Dionysios Anninos
(King's College London)
Abstract

We discuss properties of the cosmological horizon of a de Sitter universe, and compare to those of ordinary black holes. We consider both the Lorentzian and Euclidean picture. We discuss the relation to the sphere partition function and give a group-theoretic picture in terms of the de Sitter group. Time permitting we discuss some properties of three-dimensional de Sitter theories with higher spin particles. 

Mon, 04 Nov 2019
12:45
L3

Supersymmetric phases of N = 4 SYM at large N

Alejandro Cabo Bizet
(King's College London)
Abstract

We show the existence of an infinite family of complex saddle-points at large N, for the matrix model of the superconformal index of SU(N) N = 4 super Yang-Mills theory on S3 × S1 with one chemical potential τ. The saddle-point configurations are labelled by points (m,n) on the lattice Λτ = Z τ + Z with gcd(m, n) = 1. The eigenvalues at a given saddle are uniformly distributed along a string winding (m, n) times along the (A, B) cycles of the torus C/Λτ . The action of the matrix model extended to the torus is closely related to the Bloch-Wigner elliptic dilogarithm, and its values at (m,n) saddles are determined by Fourier averages of the latter along directions of the torus. The actions of (0,1) and (1,0) agree with that of pure AdS5 and the Gutowski-Reall AdS5 black hole, respectively. The actions of the other saddles take a surprisingly simple form. Generically, they carry non vanishing entropy. The Gutowski-Reall black hole saddle dominates the canonical ensemble when τ is close to the origin, and other saddles dominate when τ approaches rational points. 

Tue, 26 Nov 2019

15:30 - 16:30
L6

Reconstructing Encrypted Signals: Optimization with input from Spin Glasses and RMT

Yan Fyodorov
(King's College London)
Abstract

I will consider the problem of reconstructing a signal from its encrypted and corrupted image
by a Least Square Scheme. For a certain class of random encryption the problem is equivalent to finding the
configuration of minimal energy in a (unusual) version of spherical spin
glass model.  The Parisi replica symmetry breaking (RSB) scheme is then employed for evaluating
the quality of the reconstruction. It  reveals a phase transition controlled
by RSB and reflecting impossibility of the signal retrieval beyond certain level of noise.

Mon, 11 Nov 2019
12:45

The Holographic Dual of Strongly γ-deformed N=4 SYM Theory

Nikolay Gromov
(King's College London)
Abstract

We present a first-principles derivation of a weak-strong duality between the four-dimensional fishnet theory in the planar limit and a discretized string-like model living in AdS5. At strong coupling, the dual description becomes classical and we demonstrate explicitly the classical integrability of the model. We test our results by reproducing the strong coupling limit of the 4-point correlator computed before non-perturbatively from the conformal partial wave expansion. Next, by applying the canonical quantization procedure with constraints, we show that the model describes a quantum integrable chain of particles propagating in AdS5. Finally, we reveal a discrete reparametrization symmetry of the model and reproduce the spectrum when known analytically. Due to the simplicity of our model, it could provide an ideal playground for holography. Furthermore, since the fishnet model and N=4 SYM theory are continuously linked our consideration could shed light on the derivation of AdS/CFT for the latter. This talk is based on recent work with Amit Sever.

Subscribe to King's College London