Tue, 20 Nov 2018
16:00
L5

Definably simple groups in valued fields

Dugald Macpherson
(Leeds)
Abstract

I will discuss joint work with Gismatullin, Halupczok, and Simonetta on the following problem: given a henselian valued field of characteristic 0, possibly equipped with analytic structure (in the sense stemming originally from Denef and van den Dries), describe the possibilities for a definable group G in the valued field sort which is definably almost simple, that is, has no proper infinite definable normal subgroups. We also have results for an algebraically closed valued field K in characteristic p, but assuming also that the group is a definable subgroup of GL(n, K).

Tue, 21 Nov 2017
12:00
L4

Index Theory for Dirac Operators in Lorentzian Signature and Geometric Scattering

Alexander Strohmaier
(Leeds)
Abstract

I will review some classical results on geometric scattering
theory for linear hyperbolic evolution equations
on globally hyperbolic spacetimes and its relation to particle and charge
creation in QFT. I will then show that some index formulae for the
scattering matrix can be interpreted as a special case of the  Lorentzian
analog of the Atyiah-Patodi-Singer index theorem. I will also discuss a
local version of this theorem and its relation to anomalies in QFT.
(Joint work with C. Baer)

Thu, 27 Apr 2017
17:30
L4

Transseries as surreal analytic functions

Vincenzo Mantova
(Leeds)
Abstract

Transseries arise naturally when solving differential equations around essential singularities. Just like most Taylor series are not convergent, most transseries do not converge to real functions, even when using advanced summation techniques.

 

On the other hand, we can show that all classical transseries induce analytic functions on the surreal line. In fact, this holds for an even larger (proper) class of series which we call "omega-series".

 

Omega-series can be composed and differentiated, like LE-series, and they form a differential subfield of surreal numbers equipped with the simplest derivation. This raises once again the question whether all surreal numbers can be also interpreted as functions. Unfortunately, it turns out that the simplest derivation is in fact incompatible with this goal.

 

This is joint work with A. Berarducci.

Wed, 15 Feb 2017
16:00
C2

Topological properties of some subsets of ßN

Dona Strauss
(Leeds)
Abstract

 Anyone who has worked in $\beta $N will not be surprised to learn that some of the algebraically defined subsets of $\beta N$ are not topologically simple, even though their algebraic definition may be very simple.  I shall show that the following subsets of $\beta N$ are not Borel: $N^*+N^*$; the smallest ideal of $\beta N$; the set of idempotents in $\beta N$; any semiprincipal right ideal in $\beta N$; the set of idempotents in any left ideal in $\beta N$.

Wed, 15 Feb 2017
16:00
C2

Topological properties of some subsets of ßN

Dona Strauss
(Leeds)
Abstract

Abstract:  Anyone who has worked in $\beta $N will not be surprised to learn that some of the algebraically defined subsets of $\beta N$ are not topologically simple, even though their algebraic definition may be very simple.  I shall show that the following subsets of $\beta N$ are not Borel: $N^*+N^*$; the smallest ideal of $\beta N$; the set of idempotents in $\beta N$; any semiprincipal right ideal in $\beta N$; the set of idempotents in any left ideal in $\beta N$.

Thu, 10 Nov 2016
17:30
L6

Profinite groups with NIP theory and p-adic analytic groups

Dugald Macpherson
(Leeds)
Abstract

I will describe joint work with Katrin Tent, in which we consider a profinite group equipped with a uniformly definable family of open subgroups. We show that if the family is `full’ (i.e. includes all open subgroups) then the group has NIP theory if and only if it has NTP_2 theory, if and only if it has an (open) normal subgroup of finite index which is a direct product of finitely many compact p-adic analytic groups (for distinct primes p). Without the `fullness’ assumption, if the group has NIP theory then it  has a prosoluble open normal subgroup of finite index.

Thu, 16 Jun 2016
17:30
L6

Pseudofinite dimensions and simplicity

Dario Garcia
(Leeds)
Abstract

The concept of pseudofinite dimension for ultraproducts of finite structures was introduced by Hrushovski and Wagner. In this talk, I will present joint work with D. Macpherson and C. Steinhorn in which we explored conditions on the (fine) pseudofinite dimension that guarantee simplicity or supersimplicity of the underlying theory of an ultraproduct of finite structures, as well as a characterization of forking in terms of droping of the pseudofinite dimension. Also, under a suitable assumption, it can be shown that a measure-theoretic condition is equivalent to loc

Tue, 01 Mar 2016

14:15 - 15:30
L4

There And Back Again: A Localization's Tale.

Sian Fryer
(Leeds)
Abstract

The prime spectrum of a quantum algebra has a finite stratification in terms
of a set of distinguished primes called H-primes, and we can study these
strata by passing to certain nice localizations of the algebra.  H-primes
are now starting to show up in some surprising new areas, including
combinatorics (totally nonnegative matrices) and physics, and we can borrow
techniques from these areas to answer questions about quantum algebras and
their localizations.    In particular, we can use Grassmann necklaces -- a
purely combinatorial construction -- to study the topological structure of
the prime spectrum of quantum matrices.

Thu, 14 May 2015

17:30 - 18:30
L6

Commutative 2-algebra, operads and analytic functors

Nicola Gambino
(Leeds)
Abstract

Standard commutative algebra is based on the notions of commutative monoid, Abelian group and commutative ring. In recent years, motivations from category theory, algebraic geometry, and mathematical logic led to the development of an area that may be called commutative 2-algebra, in which the notions used in commutative algebra are replaced by their category-theoretic counterparts (e.g. commutative monoids are replaced by  symmetric monoidal categories). The aim of this talk is to explain the analogy between standard commutative algebra and commutative 2-algebra, and to outline how this suggests counterparts of basic aspects of algebraic geometry. In particular, I will describe some joint work with Andre’ Joyal on operads and analytic functors in this context.

Subscribe to Leeds