Fri, 25 Nov 2016

11:45 - 12:45
L4

InFoMM CDT Group Meeting

Roxana Pamfil, Rachel Philip and Asbjørn Riseth
(Mathematical Institute)
Abstract

Roxana Pamfil
Analysis of consumer behaviour with annotated networks


Rachel Philip
Modelling droplet breakup in a turbulent jet


Asbjørn Riseth
Stochastic optimal control of a retail pricing problem
 

Tue, 29 Nov 2016
14:30
L3

Random plane waves and other classes of random functions

Dmitry Belyaev
(Mathematical Institute)
Abstract


There are several classes of random function that appear naturally in mathematical physics, probability, number theory, and other areas of mathematics. I will give a brief overview of some of these random functions and explain what they are and why they are important. Finally, I will explain how I use chebfun to study these functions.
 

Fri, 28 Oct 2016

11:45 - 12:45
L4

InFoMM CDT Group Meeting

Niall Bootland and Sourav Mondal
(Mathematical Institute)
Abstract

Niall Bootland (Scalable Two-Phase Flow Solvers)

 

Sourav Mondal (Electrohydrodynamics in microchannel)

Abstract: Flow of liquid due to an electric potential gradient is possible when the channel walls bear a surface charge and liquid contains free charges (electrolyte). Inclusion of electrokinetic effects in microchannel flows has an added advantage over Poiseuille flow - depending upon the electrolyte concentration, the Debye layer thickness is different, which allows for tuning of flow profiles and the associated mass transport. The developed mathematical model helps in probing the mass transfer effects through a porous walled microchannel induced by electrokinetic forces.

Tue, 08 Nov 2016
14:30
L5

Solving commutators while preserving structure

Pranav Singh
(Mathematical Institute)
Abstract



Nested commutators of differential operators appear frequently in the numerical solution of equations of quantum mechanics. These are expensive to compute with and a significant effort is typically made to avoid such commutators. In the case of Magnus-Lanczos methods, which remain the standard approach for solving Schrödinger equations featuring time-varying potentials, however, it is not possible to avoid the nested commutators appearing in the Magnus expansion.

We show that, when working directly with the undiscretised differential operators, these commutators can be simplified and are fairly benign, cost-wise. The caveat is that this direct approach compromises structure -- we end up with differential operators that are no longer skew-Hermitian under discretisation. This leads to loss of unitarity as well as resulting in numerical instability when moderate to large time steps are involved. Instead, we resort to working with symmetrised differential operators whose discretisation naturally results in preservation of structure, conservation of unitarity and stability
 

Tue, 18 Oct 2016
14:30
L5

Multi-index methods for quadrature

Abdul Haji-Ali
(Mathematical Institute)
Abstract


Multi-index methods are a generalization of multilevel methods in high dimensional problem and are based on taking mixed first-order differences along all dimensions. With these methods, we can accurately and efficiently compute a quadrature or construct an interpolation where the integrand requires some form of high dimensional discretization. Multi-index methods are related to Sparse Grid methods and the Combination Technique and have been applied to multiple sampling methods, i.e., Monte Carlo, Stochastic Collocation and, more recently, Quasi Monte Carlo.

In this talk, we describe and analyse the Multi-Index Monte Carlo (MIMC) and Multi-Index Stochastic Collocation (MISC) methods for computing statistics of the solution of a PDE with random data. Provided sufficient mixed regularity, MIMC and MISC achieve better complexity than their corresponding multilevel methods. We propose optimization procedures to select the most effective mixed differences to include in these multi-index methods. We also observe that in the optimal case, the convergence rate of MIMC and MISC is only dictated by the convergence of the deterministic solver applied to a one-dimensional spatial problem. We finally show the effectiveness of MIMC and MISC in some computational tests, including PDEs with random coefficients and Stochastic Particle Systems.
 

Fri, 02 Dec 2016

13:00 - 14:00
L6

High-order filtered schemes for time-dependent second order HJB equations

Christoph Reisinger
(Mathematical Institute)
Abstract

In this talk, we present and analyse a class of “filtered” numerical schemes for second order Hamilton-Jacobi-Bellman (HJB) equations, with a focus on examples arising from stochastic control problems in financial engineering. We start by discussing more widely the difficulty in constructing compact and accurate approximations. The key obstacle is the requirement in the established convergence analysis of certain monotonicity properties of the schemes. We follow ideas in Oberman and Froese (2010) to introduce a suitable local modification of high order schemes, which are necessarily non-monotone, by “filtering” them with a monotone scheme. Thus, they can be proven to converge and still show an overall high order behaviour for smooth enough value functions. We give theoretical proofs of these claims and illustrate the behaviour with numerical tests. 

This talk is based on joint work with Olivier Bokanowski and Athena Picarelli.

Subscribe to Mathematical Institute