14:00
Interpolation and quadrature in perturbed points
Abstract
The trigonometric interpolants to a periodic function f in equispaced points converge if f is Dini-continuous, and the associated quadrature formula, the trapezoidal rule, converges if f is continuous. What if the points are perturbed? Amazingly little has been done on this problem, or on its algebraic (i.e. nonperiodic) analogue. I will present new results joint with Anthony Austin which show some surprises.
14:00
Least-squares spectral methods for operator eigenvalue problems
14:30
A robust parallel algorithm for combinatorial compressed sensing
14:30
14:30
On the spectral problem for trivariate functions
Abstract
Using a variational approach applied to generalized Rayleigh functionals, we extend the concepts of singular values and singular functions to trivariate functions defined on a rectangular parallelepiped. We also consider eigenvalues and eigenfunctions for trivariate functions whose domain is a cube. For a general finite-rank trivariate function, we describe an algorithm for computing the canonical polyadic (CP) decomposition, provided that the CP factors are linearly independent in two variables. All these notions are computed using Chebfun. Application in finding the best rank-1 approximation of trivariate functions is investigated. We also prove that if the function is analytic and two-way orthogonally decomposable (odeco), then the CP values decay geometrically, and optimal finite-rank approximants converge at the same rate.
14:30
14:00
Antitriangular factorization of saddle point matrices and the Null Space method
Abstract
Joint work with Jen Pestana.
InFoMM CDT Group Meeting
Abstract
Roxana Pamfil
Analysis of consumer behaviour with annotated networks
Rachel Philip
Modelling droplet breakup in a turbulent jet
Asbjørn Riseth
Stochastic optimal control of a retail pricing problem
14:30
Random plane waves and other classes of random functions
Abstract
There are several classes of random function that appear naturally in mathematical physics, probability, number theory, and other areas of mathematics. I will give a brief overview of some of these random functions and explain what they are and why they are important. Finally, I will explain how I use chebfun to study these functions.