Tue, 03 May 2022

14:00 - 15:00
L4

The structure of planar graphs

David Wood
(Monash University)
Abstract

This talk is about the global structure of planar graphs and other more general graph classes. The starting point is the Lipton-Tarjan separator theorem, followed by Baker's decomposition of a planar graph into layers with bounded treewidth. I will then move onto layered treewidth, which is a more global version of Baker's decomposition. Layered treewidth is a precursor to the recent development of row treewidth, which has been the key to solving several open problems. Finally, I will describe generalisations for arbitrary minor-closed classes.

Thu, 13 Oct 2022

14:00 - 15:00
L3

Introduction to the Discrete De Rham complex

Jerome Droniou
(Monash University)
Abstract

Hilbert complexes are chains of spaces linked by operators, with properties that are crucial to establishing the well-posedness of certain systems of partial differential equations. Designing stable numerical schemes for such systems, without resorting to nonphysical stabilisation processes, requires reproducing the complex properties at the discrete level. Finite-element complexes have been extensively developed since the late 2000's, in particular by Arnold, Falk, Winther and collaborators. These are however limited to certain types of meshes (mostly, tetrahedral and hexahedral meshes), which limits options for, e.g., local mesh refinement.

In this talk we will introduce the Discrete De Rham complex, a discrete version of one of the most popular complexes of differential operators (involving the gradient, curl and divergence), that can be applied on meshes consisting of generic polytopes. We will use a simple magnetostatic model to motivate the need for (continuous and discrete) complexes, then give a presentation of the lowest-order version of the complex and sketch its links with the CW cochain complex on the mesh. We will then briefly explain how this lowest-order version is naturally extended to an arbitrary-order version, and briefly present the associated properties (Poincaré inequalities, primal and adjoint consistency, commutation properties, etc.) that enable the analysis of schemes based on this complex.

Thu, 27 May 2021
10:00
Virtual

TBA

Sophie Ham
(Monash University)
Subscribe to Monash University