Fri, 21 May 2021

15:00 - 16:00
Virtual

Persistent Laplacians: properties, algorithms and implications - Zhengchao Wan

Zhengchao Wan
(Ohio State University)
Abstract

In this work we present a thorough study of the theoretical properties and devise efficient algorithms for the persistent Laplacian, an extension of the standard combinatorial Laplacian to the setting of simplicial pairs: pairs of simplicial complexes related by an inclusion, which was recently introduced by Wang, Nguyen, and Wei. 

In analogy with the non-persistent case, we establish that the nullity of the q-th persistent Laplacian equals the q-th persistent Betti number of any given simplicial pair which provides an interesting connection between spectral graph theory and TDA. 

We further exhibit a novel relationship between the persistent Laplacian and the notion of Schur complement of a matrix. This relation permits us to uncover a link with the notion of effective resistance from network circuit theory and leads to a persistent version of the Cheeger inequality.

This relationship also leads to a novel and fundamentally different algorithm for computing the persistent Betti number for a pair of simplicial complexes which can be significantly more efficient than standard algorithms. 

Fri, 22 Nov 2019

15:00 - 16:00
N3.12

Configuration spaces of particles and phase transitions

Matt Kahle
(Ohio State University)
Abstract

Configuration spaces of points in Euclidean space or on a manifold are well studied in algebraic topology. But what if the points have some positive thickness? This is a natural setting from the point of view of physics, since this the energy landscape of a hard-spheres system. Such systems are observed experimentally to go through phase transitions, but little is known mathematically.

In this talk, I will focus on two special cases where we have started to learn some things about the homology: (1) hard disks in an infinite strip, and (2) hard squares in a square or rectangle. We will discuss some theorems and conjectures, and also some computational results. We suggest definitions for "homological solid, liquid, and gas" regimes based on what we have learned so far.

This is joint work with Hannah Alpert, Ulrich Bauer, Robert MacPherson, and Kelly Spendlove.

Thu, 12 Dec 2019

12:00 - 13:30
L3

Analysis and computations of a nonlocal thin film model for two-fluid shear driven flows

Professor Saleh Tanveer
(Ohio State University)
Abstract


We present analysis and computations of a non-local thin film model developed by Kalogirou et al (2016) for a perturbed two-layer Couette flow when the thickness of the more viscous fluid layer next to the stationary wall is small compared to the thickness of the less viscous fluid. Travelling wave solutions and their stability are determined numerically, and secondary bifurcation points identified in the process. We also determine regions in parameter space where bistability is observed with two branches being linearly stable at the same time. The travelling wave solutions are mathematically justified through a quasi-solution analysis in a neighbourhood of an empirically constructed approximate solution. This relies in part on precise asymptotics of integrals of Airy functions for large wave numbers. The primary bifurcation about the trivial state is shown rigorously to be supercritical, and the dependence of bifurcation points, as a function of Reynolds number R and the primary wavelength 2πν−1/2 of the disturbance, is determined analytically. We also present recent results on time periodic solutions arising from Hoof-Bifurcation of the primary solution branch.


(This work is in collaboration with D. Papageorgiou & E. Oliveira ) 
 

Mon, 10 Jun 2019
17:00
L6

Curve complexes of Artin groups and Borel-Serre bordifications of hyperplane arrangement complements

Michael Davis
(Ohio State University)
Abstract

This is a report on work in progress with Jingyin Huang. The complement of an arrangement of linear hyperplanes in a complex vector space has a natural “Borel-Serre bordification” as a smooth manifold with corners. Its universal cover is analogous to the Borel-Serre bordification of an arithmetic lattice acting on a symmetric space as well as to the Harvey bordification of Teichmuller space. In the first case the boundary of this bordification is homotopy equivalent to a spherical building; in the second case it is homotopy equivalent to curve complex of the surface. In the case of a reflection arrangement the boundary of its universal cover is the “curve complex” of the corresponding spherical Artin group. By definition this is the simplicial complex of all conjugates of proper, irreducible, spherical parabolic subgroups in the Artin group. A cohomological method is used to show that the curve complex of a spherical Artin group has the homotopy type of a wedge of spheres.

Mon, 21 Nov 2016

15:45 - 16:45
L6

Configuration spaces of hard disks

Matthew Kahle
(Ohio State University)
Abstract

Configuration spaces of points in a manifold are well studied. Giving the points thickness has obvious physical meaning: the configuration space of non-overlapping particles is equivalent to the phase space, or energy landscape, of a hard spheres gas. But despite their intrinsic appeal, relatively little is known so far about the topology of such spaces. I will overview some recent work in this area, including a theorem with Yuliy Baryshnikov and Peter Bubenik that related the topology of these spaces to mechanically balanced, or jammed, configurations. I will also discuss work in progress with Robert MacPherson on hard disks in an infinite strip, where we understand the asymptotics of the Betti numbers as the number of disks tends to infinity. In the end, we see a kind of topological analogue of a liquid-gas phase transition.

Wed, 15 Feb 2012

10:15 - 11:15
OCCAM Common Room (RI2.28)

Multiscale models of bacterial pattern formation

Chuan Xue
(Ohio State University)
Abstract
Mathematical models of chemotactic movement of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular signaling chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s [Keller and Segel, J. Theor. Biol., 1971]. The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities that ar biologically unrealistic. Here we present a microscopic model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We show that this model permits travelling wave solutions and predicts the formation of other bacterial patterns such as radial and spiral streams. We also present connections of this microscopic model with macroscopic models of bacterial chemotaxis. This is joint work with Radek Erban, Benjamin Franz, Hyung Ju Hwang, and Kevin J.

Painter.

Wed, 25 Apr 2012

10:15 - 11:15
OCCAM Common Room (RI2.28)

Stochastic Modelling of Biochemical Networks

Hye-Won Kang
(Ohio State University)
Abstract

In this talk, I will introduce stochastic models to describe the state of the chemical networks using continuous-time Markov chains.
First, I will talk about the multiscale approximation method developed by Ball, Kurtz, Popovic, and Rempala (2006). Extending their method, we construct a general multiscale approximation in chemical reaction networks. We embed a stochastic model for a chemical reaction network into a family of models parameterized by a large parameter N. If reaction rate constants and species numbers vary over a wide range, we scale these numbers by powers of the parameter N. We develop a systematic approach to choose an appropriate set of scaling exponents. When the scaling suggests subnetworks have di erent time-scales, the subnetwork in each time scale is approximated by a limiting model involving a subset of reactions and species.

After that, I will briefly introduce Gaussian approximation using a central limit theorem, which gives a model with more detailed uctuations which may be not captured by the limiting models in multiscale approximations.

Next, we consider modeling of a chemical network with both reaction and diffusion.
We discretize the spatial domain into several computational cells and model diffusion as a reaction where the molecule of species in one computational cell moves to the neighboring one. In this case, the important question is how many computational cells we need to use for discretization to get balance between e ective diffusion rates and reaction rates both of which depend on the computational cell size. We derive a condition under which concentration of species converges to its uniform solution exponentially. Replacing a system domain size in this condition by computational cell size in our stochastic model, we derive an upper bound
for the computational cell size.

Finally, I will talk about stochastic reaction-diffusion models of pattern formation. Spatially distributed signals called morphogens influence gene expression that determines phenotype identity of cells. Generally, different cell types are segregated by boundary between
them determined by a threshold value of some state variables. Our question is how sensitive the location of the boundary to variation in parameters. We suggest a stochastic model for boundary determination using signaling schemes for patterning and investigate their effects on the variability of the boundary determination between cells.

Subscribe to Ohio State University