Tue, 03 Jun 2025
15:30
L4

Bordism categories and orientations of moduli spaces

Dominic Joyce
(Oxford)
Abstract
In many situations in Differential or Algebraic Geometry, one forms moduli spaces $\cal M$ of geometric objects, such that $\cal M$ is a manifold, or something close to a manifold (a derived manifold, Kuranishi space, …). Then we can ask whether $\cal M$ is orientable, and if so, whether there is a natural choice of orientation.
  This is important in the definition of enumerative invariants: we arrange that the moduli space $\cal M$ is a compact oriented manifold (or derived manifold), so it has a fundamental class in homology, and the invariants are the integrals of natural cohomology classes over this fundamental class.
  For example, if $X$ is a compact oriented Riemannian 4-manifold, we can form moduli spaces $\cal M$ of instanton connections on some principal $G$-bundle $P$ over $X$, and the Donaldson invariants of $X$ are integrals over $\cal M$.
  In the paper arXiv:2503.20456, Markus Upmeier and I develop a theory of "bordism categories”, which are a new tool for studying orientability and canonical orientations of moduli spaces. It uses a lot of Algebraic Topology, and computation of bordism groups of classifying spaces. We apply it to study orientability and canonical orientations of moduli spaces of $G_2$ instantons and associative 3-folds on $G_2$ manifolds, and of Spin(7) instantons and Cayley 4-folds on Spin(7) manifolds, and of coherent sheaves on Calabi-Yau 4-folds. These have applications to enumerative invariants, in particular, to Donaldson-Thomas type invariants of Calabi-Yau 4-folds.
   All this is joint work with Markus Upmeier.
Tue, 27 May 2025
15:30
L4

Cored perverse sheaves

Vidit Nanda
(Oxford)
Abstract

I will describe some recent efforts to recreate the miraculous properties of perverse sheaves on complex analytic spaces in the setting of real stratified spaces.

Tue, 13 May 2025
15:30
L4

Parametrising complete intersections

Jakub Wiaterek
(Oxford)
Abstract

We use Non-Reductive GIT to construct compactifications of Hilbert schemes of complete intersections. We then study ample line bundles on these compactifications in order to construct moduli spaces of complete intersections for certain degree types.

Fri, 21 Mar 2025
12:00
L5

Positive geometries and canonical forms via mixed Hodge theory

Francis Brown
(Oxford)
Abstract

''Positive geometries'' are a class of semi-algebraic domains which admit a unique ''canonical form'': a logarithmic form whose residues match the boundary structure of the domain. The study of such geometries is motivated by recent progress in particle physics, where the corresponding canonical forms are interpreted as the integrands of scattering amplitudes. We recast these concepts in the language of mixed Hodge theory, and identify ''genus zero pairs'' of complex algebraic varieties as a natural and general framework for the study of positive geometries and their canonical forms. In this framework, we prove some basic properties of canonical forms which have previously been proved or conjectured in the literature. We give many examples and study in detail the case of arrangements of hyperplanes and convex polytopes.

[arXiv:2501.03202]

Mon, 17 Feb 2025
16:00
C6

Hoheisel's theorem on primes in short intervals via combinatorics

Jori Merikoski
(Oxford)
Abstract

Hoheisel's theorem states that there is some $\delta> 0$ and some $x_0>0$ such that for all $x > x_0$ the interval $[x,x+x^{1-\delta}]$ contains prime numbers. Classically this is proved using the Riemann zeta function and results about its zeros such as the zero-free region and zero density estimates. In this talk I will describe a new elementary proof of Hoheisel's theorem. This is joint work with Kaisa Matomäki (Turku) and Joni Teräväinen (Cambridge). Instead of the zeta function, our approach is based on sieve methods and ideas coming from additive combinatorics, in particular, the transference principle. The method also gives an L-function free proof of Linnik's theorem on the least prime in arithmetic progressions.

Tue, 11 Feb 2025
15:30
L4

Equivariant Floer theory for symplectic C*-manifolds

Alexander Ritter
(Oxford)
Abstract
The talk will be on recent progress in a series of joint papers with Filip Živanović, about a large class of non-compact symplectic manifolds, which includes semiprojective toric varieties, quiver varieties, and conical symplectic resolutions of singularities. These manifolds admit a Hamiltonian circle action which is part of a pseudo-holomorphic action of a complex torus. The symplectic form on these spaces is highly non-exact, yet we can make sense of Hamiltonian Floer cohomology for functions of the moment map of the circle action. We showed that Floer theory induces a filtration by ideals on quantum cohomology. I will explain recent progress on equivariant Floer cohomology for these spaces, in which case we obtain a filtration on equivariant quantum cohomology. If time permits, I will also mention a presentation of symplectic cohomology and quantum cohomology for semiprojective toric varities.
Tue, 04 Feb 2025
15:30
L4

Global logarithmic deformation theory

Simon Felten
(Oxford)
Abstract

A well-known problem in algebraic geometry is to construct smooth projective Calabi-Yau varieties $Y$. In the smoothing approach, we construct first a degenerate (reducible) Calabi-Yau scheme $V$ by gluing pieces. Then we aim to find a family $f\colon X \to C$ with special fiber $X_0 = f^{-1}(0) \cong V$ and smooth general fiber $X_t = f^{-1}(t)$. In this talk, we see how infinitesimal logarithmic deformation theory solves the second step of this approach: the construction of a family out of a degenerate fiber $V$. This is achieved via the logarithmic Bogomolov-Tian-Todorov theorem as well as its variant for pairs of a log Calabi-Yau space $f_0\colon X_0 \to S_0$ and a line bundle $\mathcal{L}_0$ on $X_0$.

Tue, 21 Jan 2025
15:30
L4

Deformations and lifts of Calabi-Yau varieties in characteristic p

Lukas Brantner
(Oxford)
Abstract

Derived algebraic geometry allows us to study formal moduli problems via their tangent Lie algebras. After briefly reviewing this general paradigm, I will explain how it sheds light on deformations of Calabi-Yau varieties. 
In joint work with Taelman, we prove a mixed characteristic analogue of the Bogomolov–Tian–Todorov theorem, which asserts that Calabi-Yau varieties in characteristic $0$ are unobstructed. Moreover, we show that ordinary Calabi–Yau varieties in characteristic $p$ admit canonical (and algebraisable) lifts to characteristic $0$, generalising results of Serre-Tate for abelian varieties and Deligne-Nygaard for K3 surfaces. 
If time permits, I will conclude by discussing some intriguing questions related to our canonical lifts.  
 

Tue, 11 Feb 2025
13:00
L5

Generalized gauging in 2+1d lattice models

Kansei Inamura
(Oxford)
Abstract

Gauging is a systematic way to construct a model with non-invertible symmetry from a model with ordinary group-like symmetry. In 2+1d dimensions or higher, one can generalize the standard gauging procedure by stacking a symmetry-enriched topological order before gauging the symmetry. This generalized gauging procedure allows us to realize a large class of non-invertible symmetries. In this talk, I will describe the generalized gauging of finite group symmetries in 2+1d lattice models. This talk will be based on my ongoing work with L. Bhardwaj, S.-J. Huang, S. Schäfer-Nameki, and A. Tiwari.

Fri, 06 Dec 2024
12:00
L2

Combinatorial proof of a Non-Renormalization theorem

Paul-Hermann Balduf
(Oxford)
Abstract

In "Higher Operations in Perturbation Theory", Gaiotto, Kulp, and Wu discussed Feynman integrals that control certain deformations in quantum field theory. The corresponding integrands are differential forms in Schwinger parameters. Specifically, the integrand $\alpha$ is associated to a single topological direction of the theory.
I will show how the combinatorial properties of graph polynomials lead to a relatively simple, explicit formula for $\alpha$, that can be evaluated quickly with a computer. This is interesting for two reasons. Firstly, knowing the explicit formula leads to an elementary proof of the fact that $\alpha$ squares to zero, which asserts the absence of quantum corrections in topological field theories of two (or more) dimensions, known as Kontsevich's formality theorem. Secondly, the underlying constructions and proofs are not intrinsically limited to topological theories. In this sense, they serve as a particularly instructive example for simplifications that can occur in Feynman integrals with numerators.

Subscribe to Oxford