Mon, 16 May 2022

15:30 - 16:30

Duality groups and Cohen-Macaulay spaces

Ric Wade

Via Poincaré duality, fundamental groups of aspherical manifolds have (appropriately shifted) isomorphisms between their homology and cohomology. In a 1973 Inventiones paper, Bieri and Eckmann defined a broader notion of a Duality Group, where the isomorphism between homology and cohomology can be twisted by what they called a Dualizing Module. Examples of these groups in geometric group theory (after passing to a finite-index subgroup) include $GL(n,\mathbb{Z})$, mapping class groups, and automorphism groups of free groups.

In work-in-progress with Thomas Wasserman we are looking into the following puzzle: the examples of duality groups that we know of that do not come from manifolds all have classifying spaces that satisfy a weaker local condition called the Cohen-Macaulay property. These spaces also satisfy weaker (twisted) versions of Poincaé duality via their local homology sheaves (or local cohomology cosheaves), and we are attempting to understand more about the links between these geometric versions of duality and the algebraic notion of a duality group. The goal of the talk is to explain more about the words used in the above paragraphs and say where we have got to so far.


Sun, 20 Mar 2022

17:30 - 18:30

Bach, the Universe & Everything - The Mathematics of Decisions

Orchestra of the Age of Enlightenment & Sam Cohen
Further Information

Oxford Mathematics in partnership with Orchestra of the Age of Enlightenment - Bach, the Universe & Everything

The Mathematics of Decisions
Sunday 20 March, 5:30-6.30pm
Mathematical Institute, OX2 6GG

The Science:
In this talk, Oxford Mathematics's Samuel Cohen asks: how do you make decisions today when you know things will change tomorrow?

The Music:
JS Bach: Liebster Jesu, mein Verlangen (Dearest Jesus, my Desire, BWV 32)
This Cantata is in the form of a dialogue. It reminds us of what we have lost and what we can find.  

JS Bach: Prelude, Freu dich sehr, o meine Seele (BWV Anh. II 52)
William Byrd: Christe qui lux es et dies
Tomaso Albinoni: Adagio from Oboe Concerto Op 9 No. 2

Tickets £15: Buy tickets here

Tue, 01 Mar 2022

Independent sets in random subgraphs of the hypercube

Gal Kronenberg

Independent sets in bipartite regular graphs have been studied extensively in combinatorics, probability, computer science and more. The problem of counting independent sets is particularly interesting in the d-dimensional hypercube $\{0,1\}^d$, motivated by the lattice gas hardcore model from statistical physics. Independent sets also turn out to be very interesting in the context of random graphs.

The number of independent sets in the hypercube $\{0,1\}^d$ was estimated precisely by Korshunov and Sapozhenko in the 1980s and recently refined by Jenssen and Perkins.

In this talk we will discuss new results on the number of independent sets in a random subgraph of the hypercube. The results extend to the hardcore model and rely on an analysis of the antiferromagnetic Ising model on the hypercube.

This talk is based on joint work with Yinon Spinka.

Tue, 22 Feb 2022

Minimum degree stability and locally colourable graphs

Freddie Illingworth

We tie together two natural but, a priori, different themes. As a starting point consider Erdős and Simonovits's classical edge stability for an $(r + 1)$-chromatic graph $H$. This says that any $n$-vertex $H$-free graph with $(1 − 1/r + o(1)){n \choose 2}$ edges is close to (within $o(n^2)$ edges of) $r$-partite. This is false if $1 − 1/r$ is replaced by any smaller constant. However, instead of insisting on many edges, what if we ask that the $n$-vertex graph has large minimum degree? This is the basic question of minimum degree stability: what constant $c$ guarantees that any $n$-vertex $H$-free graph with minimum degree greater than $cn$ is close to $r$-partite? $c$ depends not just on chromatic number of $H$ but also on its finer structure.

Somewhat surprisingly, answering the minimum degree stability question requires understanding locally colourable graphs -- graphs in which every neighbourhood has small chromatic number -- with large minimum degree. This is a natural local-to-global colouring question: if every neighbourhood is big and has small chromatic number must the whole graph have small chromatic number? The triangle-free case has a rich history. The more general case has some similarities but also striking differences.

Mon, 21 Feb 2022

Lifting the degeneracy between holographic CFTs

Connor Behan

Holographic correlation functions are under good analytic control when none of the single trace operators live in long multiplets. This is famously the case for SCFTs with sixteen supercharges but it is also possible to construct examples with eight supercharges by exploiting space filling branes in AdS. In particular, one can study 4d N=2 theories which are related to each other by an S-fold in much the same way that N=3 theories are related to N=4 Super Yang-Mills. I will describe how modern methods provide a window into their correlation functions with an emphasis on anomalous dimensions. To compare the different S-folds we will need to go to one loop, and to go to one loop we will need to account for operator mixing. This provides an example of resolving degeneracy by resolving degeneracy.


Mon, 07 Mar 2022

Symmetry-enriched quantum criticality

Nick Jones

I will review aspects of the theory of symmetry-protected topological phases, focusing on the case of one-dimensional quantum chains. Important concepts include the bulk-boundary correspondence, with bulk topological invariants leading to interesting boundary phenomena. I will discuss topological invariants and associated boundary phenomena in the case that the system is gapless and described at low energies by a conformal field theory. Based on work with Ruben Verresen, Ryan Thorngren and Frank Pollmann.

Fri, 18 Feb 2022


Yizhi You
Mon, 24 Jan 2022

Factorization in Quantum Gravity and Supersymmetry

Murat Kologlu

One of the lasting puzzles in quantum gravity is whether the holographic description of a gravitational system is a single quantum mechanical theory or the disorder average of many. In the latter case, multiple copies of boundary observables do not factorize into a product, but rather have higher moments. These correlations are interpreted in the bulk as due to geometries involving spacetime wormholes which connect disjoint boundaries. 


I will talk about the question of factorization and the role of wormholes for supersymmetric observables, specifically the supersymmetric index. Working with the Euclidean gravitational path integral, I will start with a bulk prescription for computing the supersymmetric index, which agrees with the usual boundary definition. Concretely, I will focus on the setting of charged black holes in asymptotically flat four-dimensional N=2 ungauged supergravity. In this case, the gravitational index path integral has an infinite family of Kerr-Newman classical saddles with different angular velocities. However, fermionic zero-mode fluctuations annihilate the contribution of each saddle except for a single BPS one which yields the expected value of the index. I will then turn to non-perturbative corrections involving spacetime wormholes, and show that fermionic zero modes are present for all such geometries, making their contributions vanish. This mechanism works for both single- and multi-boundary path integrals. In particular, only disconnected geometries without wormholes contribute to the index path integral, and the factorization puzzle that plagues the black hole partition function is resolved for the supersymmetric index. I will also present all other single-centered geometries that yield non-perturbative contributions to the gravitational index of each boundary. Finally, I will discuss implications and expectations for factorization and the status of supersymmetric ensembles in AdS/CFT in further generality. Talk based on [2107.09062] with Luca Iliesiu and Joaquin Turiaci.

Mon, 24 Jan 2022

Deformations of ordinary Calabi-Yau varieties

Lukas Brantner

Over the complex numbers, the Bomolgorov-Tian-Todorev theorem asserts that Calabi-Yau varieties have unobstructed deformations, so any n^{th} order deformation extends to higher order.  We prove an analogue of this statement for the nicest kind of Calabi-Yau varieties in characteristic p, namely ordinary ones, using derived algebraic geometry. In fact, we produce canonical lifts to characteristic zero, thereby generalising results of Serre-Tate, Deligne-Nygaard, Ward, and Achinger-Zdanowic. This is joint work with Taelman.

Tue, 10 May 2022

14:00 - 15:00

Equivariance in Deep Learning

Sheheryar Zaidi and Bryn Elesedy

One core aim of (supervised) machine learning is to approximate an unknown function given a dataset containing examples of input-output pairs. Real-world examples of such functions include the mapping from an image to its label or the mapping from a molecule to its energy. For a variety of such functions, while the precise mapping is unknown, we often have knowledge of its properties. For example, the label of an image may be invariant to rotations of the input image. Generally, such properties formally correspond to the function being equivariant to certain actions on its input and output spaces. This has led to much research on building equivariant function classes (aka neural networks). In this talk, we survey this growing field of equivariance in deep learning for a mathematical audience, motivating the need for equivariance, covering concrete examples of equivariant neural networks, and offering a learning theoretic perspective on the benefits of equivariance. 

Subscribe to Oxford