Mon, 22 May 2023
13:00
L1

Generalized Charges of Symmetries

Lakshya Bhardwaj
(Oxford)
Abstract

I will discuss various possible ways a global symmetry can act on operators in a quantum field theory. The possible actions on q-dimensional operators are referred to as q-charges of the symmetry. Crucially, there exist generalized higher-charges already for an ordinary global symmetry described by a group G. The usual charges are 0-charges, describing the action of the symmetry group G on point-like local operators, which are well-known to correspond to representations of G. We find that there is a neat generalization of this fact to higher-charges: i.e. q-charges are (q+1)-representations of G. I will also discuss q-charges for generalized global symmetries, including not only invertible higher-form and higher-group symmetries, but also non-invertible categorical symmetries. This talk is based on a recent (arXiv: 2304.02660) and upcoming works with Sakura Schafer-Nameki.

Thu, 24 Nov 2022
15:00
L3

Desingularisation of conically singular Cayley submanifolds

Gilles Englebert
(Oxford)
Abstract

Cayley submanifolds in Spin(7) geometry are an analogue and generalisation of complex submanifolds in Kähler geometry. In this talk we provide a glimpse into calibrated geometry, which encompasses both of these, and how it ties into the study of manifolds of special holonomy. We then focus on the deformation theory of compact and conically singular Cayleys. Finally we explain how to remove conical singularities via a gluing construction.

Thu, 10 Nov 2022
15:00
L3

Compactified Universal Jacobians over Stacks of Stable Curves via GIT

George Cooper
(Oxford)
Abstract

Associated to any smooth projective curve C is its degree d Jacobian variety, parametrising isomorphism classes of degree d line bundles on C. Letting the curve vary as well, one is led to the universal Jacobian stack. This stack admits several compactifications over the stack of marked stable curves, depending on the choice of a stability condition. In this talk I will introduce these compactified universal Jacobians, and explain how their moduli spaces can be constructed using Geometric Invariant Theory (GIT). This talk is based on arXiv:2210.11457.

Mon, 24 Oct 2022
13:00
L1

Decomposition and condensation defects in 3d

Ling Lin
(Oxford)
Abstract

Quantum field theories (QFTs) in d dimensions that posses a (d-1)-form symmetry are conjectured to decompose into disjoint “universes”, each of which is itself a (local and unitary) QFT. I will give an overview of our current understanding of decomposition, and then discuss how this phenomenon occurs in the fusion of condensation defects of certain 3d QFTs. This gives a “microscopic” explanation of why in these instances, the fusion coefficient can be taken as an integer rather than a general TQFT.

Mon, 31 Oct 2022
13:00
L1

Holomorphic twist and Confinement

Jingxiang Wu
(Oxford)
Abstract

I will describe a procedure, known as holomorphic twist, to isolate protected quantities in supersymmetric quantum field theories. The resulting theories are holomorphic, interacting and have infinite dimensional symmetries, analogous to the holomorphic half of a 2D CFT. I will explain how to study quantum corrections to these symmetries and other  higher operations.
As a surprise, we find a novel UV manifestation of
confinement, dubbed "holomorphic confinement," in the example of pure
SU(N) super Yang-Mills.

Mon, 17 Oct 2022
13:00
L1

Semiclassics for Large Quantum Numbers

Mark Mezei
(Oxford)
Abstract

According to the correspondence principle, classical physics emerges in the limit of large quantum numbers. We examine three examples of the semiclassical description of conformal field theory data: large charge boundary operators in the O(2) model, large spin impurities in the free triplet scalar field theory and large charge Wilson lines in QED. By simultaneously taking the coupling to zero and quantum numbers to infinity, we can connect the microscopic to the emergent classical description smoothly.

Wed, 15 Jun 2022
14:00
L5

The heterotic $G_2$ system and coclosed $G_2$-structures on cohomogeneity one manifolds

Izar Alonso Lorenzo
(Oxford)
Abstract

When considering compatifications of heterotic string theory down to 3D, the heterotic $G_2$ system arises naturally. It is a system for both geometric fields and gauge fields over a manifold with a $G_2$-structure. In particular, it asks for the $G_2$-structure to be coclosed. We will begin this talk defining this system and giving a description of the geometry of cohomogeneity one manifolds. Then, we will look for coclosed $G_2$-structures in the cohomogeneity one setting. We will end up by proving the existence of a family of coclosed $G_2$-structures which are invariant under a cohomogeneity one action of $\text{SU}(2)^2$ on certain seven-dimensional simply connected manifolds.

Wed, 01 Jun 2022
14:00
L5

Spectral Decomposition of Partition Functions

Carmen Jorge-Diaz
(Oxford)
Abstract

Modular forms of slow growth admit a decomposition in terms of the eigenfunctions of the Laplacian operator in the Upper Half Plane. Whilst this technology has been used for many years in the context of Number Theory, it has only recently been used to further understand the partition function and the spectrum of Conformal Field Theories in 2d. In this talk, we’ll review the technology and how it has been applied to CFTs by several authors, as well as present a few new results.

Tue, 07 Jun 2022

12:00 - 13:15
L5

Hydrodynamic Approach to Integrable Quantum Field Theory

Dr Aleksandra Ziolkowska
(Oxford)
Abstract

Hydrodynamics allow for efficient computation of many-body dynamics and have been successfully used in the study of black hole horizons, collective behaviour of QCD matter in heavy ion collisions, and non-equilibrium behaviour in strongly-interacting condensed matter systems.
In this talk, I will present the application of hydrodynamics to quantum field theory with an infinite number of local conservation laws. Such an integrable system can be described within the recently developed framework of generalised hydrodynamics. I will present the key assumptions of generalised hydrodynamics as well as summarise some recent developments in this field. In particular, I will concentrate on the study of the SU(3)_2-Homogeneous sine-Gordon model. Thanks to the hydrodynamic approach, we were able to identify the key dynamical signatures of unstable excitations in this integrable quantum field theory and simulate the real time RG-flow of the theory between interacting and free conformal regimes.
The talk is based on joint work with Olalla Castro-Alvaredo, Cecilia De Fazio and Benjamin Doyon.

Wed, 25 May 2022

14:00 - 15:00
L5

Topological Orders and Higher Fusion Categories

Thibault Décoppet
(Oxford)
Abstract

The notion of topological order was introduced by Xiao-Gang Wen in order to capture the features of the exotic phases of matter given by fractional quantum Hall phases. I will motivate why the corresponding mathematical structures are higher categories with additional properties. In 2+1-dimensions, I will explain in details how the definition of fusion category arises from physical and geometrical intuitions about topological orders. Finally, I will sketch how the notion of higher fusion category emerges in higher dimensions.

Subscribe to Oxford