12:00
12:00
12:00
A Positive Way to Scatter Strings and Particles
Abstract
We present a new formulation of string and particle amplitudes that emerges from simple one-dimensional models. The key is a new way to parametrize the positive part of Teichmüller space. It also builds on the results of Mirzakhani for computing Weil-Petterson volumes. The formulation works at all orders in the perturbation series, including non-planar contributions. The relationship between strings and particles is made manifest as a "tropical limit". The results are well adapted to studying the scattering of large numbers of particles or amplitudes at high loop order. The talk will in part cover results from arXiv:2309.15913, 2311.09284.
14:00
Elliptic representations
Abstract
In representation theory, the characters of induced representations are explicitly known in terms of the character of the inducing representation. This leads to the question of understanding the elliptic representation space, i.e., the space of representations modulo the properly (parabolically) induced characters. I will give an overview of the description of the elliptic space for finite Weyl groups, affine Weyl groups, affine Hecke algebras, and their connection with the geometry of the nilpotent cone of a semisimple complex Lie algebra. These results fit together in the representation theory of semisimple p-adic groups, where they lead to a new description of the elliptic space within the framework of the local Langlands parameterisation.
Imaginaries in products and in the ring of adeles
Abstract
In this talk I will present joint work with Ehud Hrushovski on imaginaries in the ring of adeles and more generally in products and restricted products of structures (including the generalised products of Feferman-Vaught).
We prove a general theorem on weak elimination of imaginaries in products with respect to additional sorts which we deduce from an elimination of imaginaries for atomic and atomless Booleanizations of a theory. This combined with uniform elimination of imaginaries for p-adic numbers in a language with extra sorts as p-adic lattices proved first by Hrushovski-Martin-Rideau and more recently by Hils-Rideau-Kikuchi in a slightly different language, yields weak elimination of imaginaries for the ring of adeles in a language with extra sorts as adelic versions of the p-adic lattices.
The proofs of the general results on products use Boolean valued model theory, stability theory, analysis of definable groups and liaison groups, and descriptive set theory of smooth Borel equivalence relations including Harrington-Kechris-Louveau and Glimm-Efros dichotomy.
Scalable Gaussian Process Regression with Quadrature-based Features
Abstract
Gaussian processes provide a powerful probabilistic kernel learning framework, which allows high-quality nonparametric learning via methods such as Gaussian process regression. Nevertheless, its learning phase requires unrealistic massive computations for large datasets. In this talk, we present a quadrature-based approach for scaling up Gaussian process regression via a low-rank approximation of the kernel matrix. The low-rank structure is utilized to achieve effective hyperparameter learning, training, and prediction. Our Gauss-Legendre features method is inspired by the well-known random Fourier features approach, which also builds low-rank approximations via numerical integration. However, our method is capable of generating high-quality kernel approximation using a number of features that is poly-logarithmic in the number of training points, while similar guarantees will require an amount that is at the very least linear in the number of training points when using random Fourier features. The utility of our method for learning with low-dimensional datasets is demonstrated using numerical experiments.
Redefining the finite element
Abstract
The Ciarlet definition of a finite element has been used for many years to describe the requisite parts of a finite element. In that time, finite element theory and implementation have both developed and improved, which has left scope for a redefinition of the concept of a finite element. In this redefinition, we look to encapsulate some of the assumptions that have historically been required to complete Ciarlet’s definition, as well as incorporate more information, in particular relating to the symmetries of finite elements, using concepts from Group Theory. This talk will present the machinery of the proposed new definition, discuss its features and provide some examples of commonly used elements.
14:15
How homotopy theory helps to classify algebraic vector bundles
Abstract
Classically, topological vector bundles are classified by homotopy classes of maps into infinite Grassmannians. This allows us to study topological vector bundles using obstruction theory: we can detect whether a vector bundle has a trivial subbundle by means of cohomological invariants. In the context of algebraic geometry, one can ask whether algebraic vector bundles over smooth affine varieties can be classified in a similar way. Recent advances in motivic homotopy theory give a positive answer, at least over an algebraically closed base field. Moreover, the behaviour of vector bundles over general base fields has surprising connections with the theory of quadratic forms.
14:15
A theory of type B/C/D enumerative invariants
Abstract
We propose a theory of enumerative invariants for structure groups of type B/C/D, that is, for the orthogonal and symplectic groups. For example, we count orthogonal or symplectic principal bundles on projective varieties, and there is also a quiver analogue called self-dual quiver representations. We discuss two different flavours of these invariants, namely, motivic invariants and homological invariants, the former of which can be used to define Donaldson–Thomas invariants in type B/C/D. We also discuss algebraic structures arising from the relevant moduli spaces, including Hall algebras, Joyce's vertex algebras, and modules for these algebras, which are used to write down wall-crossing formulae for our invariants.
14:15
Vertex algebras from divisors on Calabi-Yau threefolds
Abstract
We construct vertex algebras associated to divisors $S$ in toric Calabi-Yau threefolds $Y$, satisfying conjectures of Gaiotto-Rapcak and Feigin-Gukov, and in particular such that the characters of these algebras are given by a local analogue of the Vafa-Witten partition function of the underlying reduced subvariety $S^{red}$. These results are part of a broader program to establish a dictionary between the enumerative geometry of coherent sheaves on surfaces and Calabi-Yau threefolds, and the representation theory of vertex algebras and affine Yangian-type quantum groups.
13:00
The Bethe-Gauge Correspondence for Superspin Chains
Abstract
The Bethe-Gauge Correspondence (BGC) of Nekrasov and Shatashvili, linking quantum integrable spin chains to two-dimensional supersymmetric gauge theories with N=2 supersymmetry, stands out as a significant instance of the deep connection between supersymmetric gauge theories and integrable models. In this talk, I will delve into this correspondence and its origins for superspin chains. To achieve this, I will first elucidate the Bethe Side and its corresponding Gauge Side of the BGC. Subsequently, it becomes evident that the BGC can be naturally realized within String Theory. I will initially outline the brane configuration for the realization of the Gauge Side. Through the use of string dualities, this brane configuration will be mapped to another, embodying the Bethe Side of the correspondence. The 4D Chern-Simons theory plays a crucial role in this latter duality frame, elucidating the integrability of the Bethe Side. Lastly, I will elaborate on computing the main object of interest for integrable superspin chains—the R-matrix—from the BGC. While this provides a rather comprehensive picture of the correspondence, some important questions remain for further clarification. I will summarize some of the most interesting ones at the end of the talk.