Thu, 07 Mar 2019
17:00
L5

Proving Lower Bounds on the Sizes of Proofs and Computations

Rahul Santhanam
(Oxford)
Abstract

The well known (and notoriously hard) P vs NP problem asks whether every Boolean function with polynomial-size proofs is also computable in
polynomial time.

The standard approach to the P vs NP problem is via circuit complexity. For progressively richer classes of Boolean circuits (networks of AND, OR and NOT
logic gates), one wishes to show super-polynomial lower bounds on the sizes of circuits (as a function of the size of the input) computing some Boolean
function known to be in NP, such as the Satisfiability problem.

However, there is a more logic-oriented approach initiated by Cook and Reckhow, going through proof complexity rather than circuit complexity. For
progressively richer proof systems, one wishes to show super-polynomial lower bounds on the sizes of proofs (as a function of the size of the tautology) of
some sequence of propositional tautologies.

I will give a brief overview on known results along these two directions, and on their limitations. Somewhat surprisingly, similar techniques have been found
to be useful for these seemingly different approaches. I will say something about known connections between the approaches, and pose the question of
whether there are deeper connections.

Finally, I will discuss how the perspective of proof complexity can be used to formalize the difficulty of proving lower bounds on the sizes of computations
(or of proofs).

 

Sat, 05 Jan 2019
16:15

TBA

Rahul Santhanam
(Oxford)
Thu, 14 Feb 2019
17:00
L5

A Dichotomy for Some Elementarily Generated Modal Logics

Stanislav Kikot
(Oxford)
Abstract

 The talk is about the normal modal logics of elementary classes defined by first-order formulas of the form
 'for all x_0 there exist x_1, ..., x_n phi(x_0, x_1, ... x_n)' with phi being a conjunction of binary atoms.
 I'll show that many properties of these logics, such as finite axiomatisability,
 elementarity,  axiomatisability by a set of canonical formulas or by a single generalised Sahlqvist formula,
 together with modal definability of the initial formula, either simultaneously hold or simultaneously do not hold.
 

Tue, 15 Jan 2019

14:00 - 15:00
L5

Quantifying the ill-conditioning of analytic continuation

Lloyd N. Trefethen
(Oxford)
Abstract

Analytic continuation is ill-posed, but becomes merely ill-conditioned (though with an infinite condition number) if it is known that the function in question is bounded in a given region of the complex plane.
This classical, seemingly theoretical subject has many connections with numerical practice.  One argument indicates that if one tracks an analytic function from z=1 around a branch point at z=0 and back to z=1 again by a Weierstrass chain of disks, the number of accurate digits is divided by about exp(2 pi e) ~= 26,000,000.

Tue, 26 Feb 2019
14:15
L4

Kac-Moody correction factors and Eisenstein series

Thomas Oliver
(Oxford)
Abstract

Formally, the Fourier coefficients of Eisenstein series on Kac-Moody groups contain as yet mysterious automorphic L-functions relevant to open conjectures such as that of Ramanujan and Langlands functoriality. In this talk, we will consider the constant Fourier coefficient, if it even makes sense rigorously, and its relationship to the geometry and combinatorics of a Kac-Moody group. Joint work with Kyu-Hwan Lee.

 

Mon, 18 Feb 2019

14:15 - 15:15
L4

Ricci Flow in Milnor Frames

Syafiq Johar
(Oxford)
Abstract

In this talk, we are going to talk about the Type I singularity on 4-dimensional manifolds foliated by homogeneous S3 evolving under the Ricci
flow. We review the study on rotationally symmetric manifolds done by Angenent and Isenberg as well as by Isenberg, Knopf and Sesum. In the latter, a global frame for the tangent bundle, called the Milnor frame, was used to set up the problem. We shall look at the symmetries of the manifold, derived from Lie groups and its ansatz metrics, and this global tangent bundle frame developed by Milnor and Bianchi. Numerical simulations of the Ricci flow on these manifolds are done, following the work by Garfinkle and Isenberg, providing insight and conjectures for the main problem. Some analytic results will be proven for the manifolds S1×S3 and S4 using maximum principles from parabolic PDE theory and some sufficiency conditions for a neckpinch singularity will be provided. Finally, a problem from general relativity with similar metric symmetries but endowed on a manifold with differenttopology, the Taub-Bolt and Taub-NUT metrics, will be discussed.

 

 

Tue, 22 Jan 2019

15:30 - 16:30
L4

The tautological ring of Shimura varieties

Paul Ziegler
(Oxford)
Abstract

Not much is known about the Chow rings  of moduli spaces of abelian varieties or more general Shimura varieties. The tautological ring of a Shimura variety of Hodge type is a subring of its Chow ring containing many "interesting" classes. I will talk about joint work with Torsten Wedhorn on this ring as well as its characteristic p variant. The later is strongly related to the question of understanding the cycle classes of Ekedahl-Oort strata in the Chow ring.

Tue, 27 Nov 2018

12:45 - 13:30
C5

Wrinkling of Elastic Bilayers

Hamza Alawiye
(Oxford)
Abstract

Wrinkling is a universal instability occurring in a wide variety of engineering and biological materials. It has been studied extensively for many different systems but a full description is still lacking. Here, we provide a systematic analysis of the wrinkling of a thin hyperelastic film over a substrate in plane strain using stream functions. For comparison, we assume that wrinkling is generated either by the isotropic growth of the film or by the lateral compression of the entire system. We perform an exhaustive linear analysis of the wrinkling problem for all stiffness ratios and under a variety of additional boundary and material effects.

Tue, 05 Mar 2019
15:30
L4

How many real Artin-Tate motives are there?

Martin Gallauer
(Oxford)
Further Information

The goals of my talk are 1) to place this question within the framework of tensor-triangular geometry, and 2) to report on joint work with Paul Balmer (UCLA) which provides an answer in this framework.

Subscribe to Oxford