Thu, 02 Mar 2017
11:00
C5

A New Technique for Definability in Function Fields.

Philip Dittmann
(Oxford)
Abstract


Generalising previous definability results in global fields using
quaternion algebras, I will present a technique for first-order
definitions in finite extensions of Q(t). Applications include partial
answers to Pop's question on Isomorphism versus Elementary Equivalence,
and some results on Anscombe's and Fehm's notion of embedded residue.

Thu, 23 Feb 2017
11:00
C5

Non-reduced schemes and Zariski Geometries

Alfonso Ruiz
(Oxford)
Abstract

Using results by Eisenbud, Schoutens and Zilber I will propose a model theoretic structure that aims to capture the algebra (or geometry) of a non reduced scheme over an algebraically closed field. 

Mon, 13 Mar 2017

11:00 - 11:30
L5

Diffeomorphism-equivariant configuration spaces with twisted summable labels

Hongyun Yon
(Oxford)
Abstract

We construct the diffeomorphism-equivariant “scanning map” associated to the configuration spaces of manifolds with twisted summable labels. The scanning map is also functorial with respect to embeddings of manifolds. To adapt P. Salvatore's idea of non-commutative summation into twisted setting, we define a bundle of Fulton-MacPherson operads over a manifold M whose fibres are built within tangent spaces of M.

Mon, 27 Feb 2017
15:45
L6

From moduli spaces of manifolds to K-theory

Ulrike Tillmann
(Oxford)
Abstract

For mapping class groups of surfaces it is well-understood that their homology stability is closely related to the fact that they give rise to an infinite loop space. Indeed, they define an operad whose algebras group complete to infinite loop spaces.

In recent work with Basterra, Bobkova, Ponto and Yaekel we define operads with homology stability (OHS) more generally and prove that they are infinite loop space operads in the above sense. The strong homology stability results of Galatius and Randal-Williams for moduli spaces of manifolds can be used to construct examples of OHSs. As a consequence the map to K-theory defined by the action of the diffeomorphisms on the middle dimensional homology can be shown to be a map of infinite loop spaces.

Mon, 06 Mar 2017

12:45 - 13:45
L3

Holographic renormalization and supersymmetry

Pietro Benetti-Genolini
(Oxford)
Abstract

Localization and holography are powerful approaches to the computation of supersymmetric observables. The computations may, however, include divergences. Therefore, one needs renormalization schemes preserving supersymmetry. I will consider minimal gauged supergravity in five dimensions to demonstrate that the standard holographic renormalization scheme breaks supersymmetry, and propose a set of non-standard boundary counterterms that restore supersymmetry. I will then show that for a certain class of solutions the improved on-shell action correctly reproduces an intrinsic observable of four-dimensional SCFTs, the supersymmetric Casimir energy.

 
Mon, 20 Feb 2017

12:45 - 13:45
L3

Dualities of Deformed N=2 SCFTs from torus knots and links

Fabian Ruehle
(Oxford)
Abstract

We study D3 brane theories that are described as deformations of N=2 SCFTs. They arise at the self-intersection of a 7-brane in F-Theory. As we shall explain, the associated string junctions and their monodromies can be studied via torus knots or links. The monodromy reduces (potentially different) flavor algebras of dual deformations of N=2 theories and projects out charged states, leading to N=1 SCFTs. We propose an explanation for these effects in terms of an electron-monopole-dyon condensate.

 
 
Thu, 02 Feb 2017
11:00
C4

Model Theoretic Aspects of Gelfand-Naimark duality.

Nicholas Wentzlaff-Eggebert
(Oxford)
Abstract


Abstract: We will consider a model theoretic approach to Gelfand-Naimark duality, from the point of view of (generalized) Zariski structures. In particular we will show quantifier elimination for compact Hausdorff spaces in the natural Zariski language. Moreover we may see a slightly unusual construction and tweak to the language, which improves stability properties of the structures.
 

Fri, 24 Feb 2017
14:15
C3

Ice sheet runoff and Dansgaard-Oeschger cycles

Ian Hewitt
(Oxford)
Abstract

Many northern hemisphere climate records show a series of rapid climate changes - Dansgaard-Oesgher (D-O) cycles - that recurred on centennial to millennial timescales throughout most of the last glacial period.  They consist of sudden warming jumps of order 10°C, followed generally by a slow cooling lasting a few centuries, and then a rapid temperature drop into a cold period of similar length.  Most explanations for D-O events call on changes in the strength of the Atlantic meridional overturning circulation (AMOC), but the mechanism for triggering and pacing such changes is uncertain. Changes in freshwater delivery to the ocean are assumed to be important. 

Here, we investigate whether the proposed AMOC changes could have occurred as part of a natural relaxation oscillation, in which runoff from the northern hemisphere ice sheets varies in response to each warming and cooling event, and in turn provides the freshwater delivery that controls the ocean circulation.  In this mechanism the changes are buffered and paced by slow changes in salnity of the Arctic ocean.  We construct a simple model to investigate whether the timescales and magnitudes make this a viable mechanism.  

Thu, 02 Feb 2017
17:30
L6

On algebraically closed fields of characteristic 1

Boris Zilber
(Oxford)
Abstract

I will start with a motivation of what algebraic and model-theoretic properties an algebraically closed field of characteristic 1 is expected to have. Then I will explain how these properties forces one to follow the route of Hrushovski's construction/Schanuel-type conjecture analysis. Then I am able to formulate very precise axioms that such a field must satisfy.  The main theorem then states that under the axioms the structure has the desired algebraic properties.
The axioms have a form of statements about existence of solutions to systems of equations in terms of a 'multi-dimansional' valuation theory and the validity of these statements is an open problem to be discussed. 

 

Tue, 07 Mar 2017
15:45
L4

Local cohomology and canonical stratification

Vidit Nanda
(Oxford)
Abstract

Every finite regular CW complex is, ipso facto, a cohomologically stratified space when filtered by skeleta. We outline a method to recover the canonical (i.e., coarsest possible) stratification of such a complex that is compatible with its underlying cell structure. Our construction proceeds by first localizing and then resolving a complex of cosheaves which capture local cohomology at every cell. The result is a sequence of categories whose limit recovers the desired strata via its (isomorphism classes of) objects. As a bonus, we observe that the entire process is algorithmic and amenable to efficient computations!

Subscribe to Oxford