Thu, 19 Jan 2017
16:00
L6

Joint Logic/Number Theory Seminar: Formality and higher Massey products in Galois cohomology

Adam Topaz
(Oxford)
Abstract

There are several conjectures in the literature suggesting that absolute Galois groups of fields tend to be "as free as possible," given their "almost-abelian" data.
This can be made precise in various ways, one of which is via the notion of "1-formality" arising in analogy with the concept in rational homotopy theory.
In this talk, I will discuss several examples which illustrate this phenomenon, as well as some surprising diophantine consequences.
This discussion will also include some recent joint work with Guillot, Mináč, Tân and Wittenberg, concerning the vanishing of mod-2 4-fold Massey products in the Galois cohomology of number fields.

Mon, 06 Feb 2017

12:45 - 13:45
L3

Mirror Symmetry for G2-Manifolds: Twisted Connected Sums and Dual Tops

Andreas Braun
(Oxford)
Abstract

Recently, millions of novel examples of compact G2 holonomy manifolds have been constructed as twisted connected sums of asymptotically cylindrical Calabi-Yau threefolds. In case these are K3 fibred, they can in turn be constructed from dual pairs of tops. This is analogous to Batyrev's construction of Calabi-Yau manifolds via reflexive polytopes. For compactifications of Type II superstrings on such G2 manifolds, we formulate a construction of the mirror.

 
Mon, 23 Jan 2017

12:45 - 13:45
L3

Large Spin Pertubation Theory

Fernando Alday
(Oxford)
Abstract

A conformal field theory is characterised by the CFT data, namely the spectrum of scaling dimensions and OPE coefficients. The idea of the conformal bootstrap is to use associativity of the operator algebra together with the symmetries of the theory to constraint the CFT data. For the sector of operators with large spin one can actually use these ideas to obtain analytical results. It was recently understood how to set up a systematic expansion around this sector, leading to analytic results to all orders in inverse powers of the spin. We will show how to use this large spin perturbation theory to obtain analytic results for vast families of CFTs. Some of the applications include vector models, weakly coupled gauge theories and the computation of loops for scalar theories in AdS.

 
 
Mon, 16 Jan 2017

12:45 - 13:45
L3

The null string origin of the ambitwistor string

Eduardo Casali
(Oxford)
Abstract

The ambitwistor string of Mason and Skinner has been very successful in describing field theory amplitudes, at both loop and tree-level for a variety of theories. But the original action given by Mason and Skinner is already partially gauge-fixed, which obscures some issues related to modular invariance and the connection to conventional string theories. In this talk I will argue that the Null string is the ungauge-fixed version of the Ambitwistor string. This clarifies the geometry of the original Ambitwistor string and gives a road map to understanding modular invariance, and gives new formulas for loop amplitudes in which we expect that UV divergences will be easier to analyse.

 
 
Mon, 20 Feb 2017

15:45 - 16:45
L6

C-equivariant elliptic cohomology when C is a fusion category

Andre Henriques
(Oxford)
Abstract

Elliptic cohomology is a family of generalised cohomology theories
$Ell_E^*$ parametrised by an elliptic curve $E$ (over some ring $R$).
Just like many other cohomology theories, elliptic cohomology admits
equivariant versions. In this talk, I will recall an old conjectural
description of elliptic cohomology, due to G. Segal, S. Stolz and P.
Teichner. I will explain how that conjectural description led me to
suspect that there should exist a generalisation of equivariant
elliptic cohomology, where the group of equivariance gets replaced by
a fusion category. Finally, I will construct $C$-equivariant elliptic
cohomology when $C$ is a fusion category, and $R$ is a ring of
characteristc zero.

Mon, 01 May 2017

16:00 - 17:00
L4

Scalable bifurcation analysis of nonlinear partial differential equations and variational inequalities

Patrick Farrell
(Oxford)
Abstract

Computing the solutions $u$ of an equation $f(u, \lambda) = 0$ as the parameter $\lambda$ is varied is a central task in applied mathematics and engineering. In this talk I will present a new algorithm, deflated continuation, for this task.

Deflated continuation has three main advantages. First, it is capable of computing disconnected bifurcation diagrams; previous algorithms only aimed to compute that part of the bifurcation diagram continuously connected to the initial data. Second, its implementation is extremely simple: it only requires a minor modification to any existing Newton-based solver. Third, it can scale to very large discretisations if a good preconditioner is available.

Among other problems, we will apply this to a famous singularly perturbed ODE, Carrier's problem. The computations reveal a striking and beautiful bifurcation diagram, with an infinite sequence of alternating pitchfork and fold bifurcations as the singular perturbation parameter tends to zero. The analysis yields a novel and complete taxonomy of the solutions to the problem, and demonstrates that a claim of Bender & Orszag (1999) is incorrect. We will also use the algorithm to calculate distinct local minimisers of a topology optimisation problem via the combination of deflated continuation and a semismooth Newton method.

Mon, 13 Feb 2017

14:15 - 15:15
L4

Gauge Theory and Symplectic Duality

Matt Bullimore
(Oxford)
Abstract

Symplectic duality is an equivalence of mathematical structures associated to pairs of hyper-Kahler cones. All known examples arise as the `Higgs branch’ and `Coulomb branch' of a 3d superconformal quantum field theory. In particular, there is a rich class of examples where the Higgs branch is a Nakajima quiver variety and the Coulomb branch is a moduli spaceof singular magnetic monopoles. In this case, I will show that the equivariant cohomology of the moduli space of based quasi-maps to the Higgs branch transforms as a Verma module for the deformation quantisation of the Coulomb branch

Mon, 23 Jan 2017

14:15 - 15:15
L4

Moduli spaces of unstable curves

Frances Kirwan
(Oxford)
Abstract

The construction of the moduli spaces of stable curves of fixed genus is one of the classical applications of Mumford's geometric invariant theory (GIT).  Here a projective curve is stable if it has only nodes as singularities and its automorphism group is finite. Methods from non-reductive GIT allow us to classify the singularities of unstable curves in such a way that we can construct moduli spaces of unstable curves of fixed singularity type.

Subscribe to Oxford