Boundary Conditions, Mirror Symmetry and Symplectic Duality
Abstract
In the last few years, it has become clear that there are striking connections between supersymmetry and geometric representation theory. In this talk, I will discuss boundary conditions in three dimensional gauge theories with N = 4 supersymmetry. I will then outline a physical understanding of a remarkable conjecture in representation theory known as `symplectic duality.
Quasi-Abelian Categories in Analytic Geometry
Abstract
In this talk I will give several perspectives on the role of
quasi-abelian categories in analytic geometry. In particular, I will
explain why a certain completion of the category of Banach spaces is a
convenient setting for studying sheaves of topological vector spaces on
complex manifolds. Time permitting, I will also argue why this category
may be a good candidate for a functor of points approach to (derived)
analytic geometry.
The moduli space of representations of the fundamental group of a punctured Riemann surface into SL(2,C)
Abstract
I will collect some results about the study of topological and algebraic invariants of this moduli space by using non-abelian Hodge theory. Some keywords are: Higgs bundles, Mixed Hodge structures.
Equivariant Topological Quantum Field Theory
Abstract
Topological Quantum Field Theories are functors from a category of bordisms of manifolds to (usually) some categorification of the notion of vector spaces. In this talk we will first discuss why mathematicians are interested in these in general and an overview of the relevant notions. After this we will have a closer look at the example of functors from the bordism category of 1-, 2- and 3-dimensional manifolds equipped with principal G-bundles, for G a finite group, to nice categorifications of vector spaces.
11:00
Formal degrees of unipotent discrete series representations of semisimple $p$-adic groups
Abstract
The formal degree is a fundamental invariant of a discrete series representation which generalizes the notion of dimension from finite dimensional representations. For discrete series with unipotent cuspidal support, a formula for formal degrees, conjectured by Hiraga-Ichino-Ikeda, was verified by Opdam (2015). For split exceptional groups, this formula was previously known from the work of Reeder (2000). I will present a different interpretation of the formal degrees of unipotent discrete series in terms of the nonabelian Fourier transform (introduced by Lusztig in the character theory of finite groups of Lie type) and certain invariants arising in the elliptic theory of the affine Weyl group. This interpretation relates to recent conjectures of Lusztig about `almost characters' of p-adic groups. The talk is based on joint work with Eric Opdam.
On the birational invariance of the BCOV torsion of Calabi-Yau threefold (joint with V. Maillot)
Abstract
Fang, Lu and Yoshikawa conjectured a few years ago that a certain string-theoretic invariant (originally introduced by the physicists M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa) of Calabi-Yau threefolds is a birational invariant. This conjecture can be viewed as a "secondary" analog (in dimension three) of the birational invariance of Hodge numbers of Calabi-Yau varieties established by Batyrev and Kontsevich. Using the arithmetic Riemann-Roch theorem, we prove a weak form of this conjecture.