12:00
12:00
12:00
Quantization of time-like energy for wave maps into spheres
Abstract
Bounds of Minkowski type for finite complex linear groups - the answer to a question of Serre
Abstract
In 1878, Jordan showed that there is a function f on the set of natural numbers such that, if $G$ is a finite subgroup of $GL(n,C)$, then $G$ has an abelian normal subgroup of index at most $f(n)$. Early bounds were given by Frobenius and Schur, and close to optimal bounds were given by Weisfeiler in unpublished work in 1984 using the classification of finite simple groups; about ten years ago I obtained the optimal bounds. Crucially, these are "absolute" bounds; they do not address the wider question of divisibility of orders.
In 1887, Minkowski established a bound for the order of a Sylow p-subgroup of a finite subgroup of GL(n,Z). Recently, Serre asked me whether I could obtain Minkowski-like results for complex linear groups, and posed a very specific question. The answer turns out to be no, but his suggestion is actually quite close to the truth, and I shall address this question in my seminar. The answer addresses the divisibility issue in general, and it turns out that a central technical theorem on the structure of linear groups from my earlier work which there was framed as a replacement theorem can be reinterpreted as an embedding theorem and so can be used to preserve divisibility.
11:00
Manifolds with odd Euler characteristic
Abstract
Orientable manifolds can only have an odd Euler characteristic in dimensions divisible by 4. I will prove the analogous result for spin and string manifolds, where the dimension can only be a multiple of 8 and 16 respectively. The talk will require very little background. I'll go over the definition of spin and string structures, discuss cohomology operations and Poincare duality.
11:00
'Additive extensions and Pell's equation in polynomials'.
Abstract
We will discuss families of Pell's equation in polynomials
with one complex parameter. In particular the relation between
the generic equation and its specializations. Our emphasis will
be on families with a triple zero. Then additive extensions enter
the picture.
Group Cohomology and Quasi-Isometries
Abstract
I will present a basic overview of finiteness conditions, group cohomology, and related quasi-isometry invariance results. In particular, I will show that if a group satisfies certain finiteness conditions, group cohomology with group ring coefficients encodes some structure of the `homology at infinity' of a group. This is seen for hyperbolic groups in the work of Bestvina-Mess, which relates the group cohomology to the Čech cohomology of the boundary.
11:00
The Riemann zeta function, quantum chaos and random matrices
Abstract
Outer Automorphisms of Hyperbolic Groups
Abstract
I will talk about a remarkable theorem by Paulin, which says
that if a one-ended hyperbolic group has infinite outer automorphism
group, then it splits over a two-ended subgroup. In particular, this
gives a condition which ensures a hyperbolic group doesn't have property
(T).